» Articles » PMID: 18507452

Continuum Polarizable Force Field Within the Poisson-Boltzmann Framework

Overview
Journal J Phys Chem B
Specialty Chemistry
Date 2008 May 30
PMID 18507452
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

We have developed and tested a complete set of nonbonded parameters for a continuum polarizable force field. Our analysis shows that the new continuum polarizable model is consistent with B3LYP/cc-pVTZ in modeling electronic response upon variation of dielectric environment. Comparison with experiment also shows that the new continuum polarizable model is reasonable, with accuracy similar to that of B3LYP/cc-pVTZ in reproduction of dipole moments of selected organic molecules in the gas phase. We have further tested the validity to interchange the Amber van der Waals parameters between the explicit and continuum polarizable force fields with a series of dimers. It can be found that the continuum polarizable model agrees well with MP2/cc-pVTZ, with deviations in dimer binding energies less than 0.9 kcal/mol in the aqueous dielectric environment. Finally, we have optimized atomic cavity radii with respect to experimental solvation free energies of 177 training molecules. To validate the optimized cavity radii, we have tested these parameters against 176 test molecules. It is found that the optimized Poisson-Boltzmann atomic cavity radii transfer well from the training set to the test set, with an overall root-mean-square deviation of 1.30 kcal/mol, an unsigned average error of 1.07 kcal/mol, and a correlation coefficient of 92% for all 353 molecules in both the training and test sets. Given the development documented here, the next natural step is the construction of a full protein/nucleic acid force field within the new continuum polarization framework.

Citing Articles

Performance Tuning of Polarizable Gaussian Multipole Model in Molecular Dynamics Simulations.

Huang Z, Wu Y, Duan Y, Luo R J Chem Theory Comput. 2025; 21(2):847-858.

PMID: 39772516 PMC: 11854381. DOI: 10.1021/acs.jctc.4c01368.


Assessment of Amino Acid Electrostatic Parametrizations of the Polarizable Gaussian Multipole Model.

Zhao S, Cieplak P, Duan Y, Luo R J Chem Theory Comput. 2024; 20(5):2098-2110.

PMID: 38394331 PMC: 11060985. DOI: 10.1021/acs.jctc.3c01347.


Optimal Scheme to Achieve Energy Conservation in Induced Dipole Models.

Huang Z, Zhao S, Cieplak P, Duan Y, Luo R, Wei H J Chem Theory Comput. 2023; 19(15):5047-5057.

PMID: 37441805 PMC: 10434752. DOI: 10.1021/acs.jctc.3c00226.


Transferability of the Electrostatic Parameters of the Polarizable Gaussian Multipole Model.

Zhao S, Cieplak P, Duan Y, Luo R J Chem Theory Comput. 2023; 19(3):924-941.

PMID: 36696564 PMC: 10152989. DOI: 10.1021/acs.jctc.2c01048.


Accurate Reproduction of Quantum Mechanical Many-Body Interactions in Peptide Main-Chain Hydrogen-Bonding Oligomers by the Polarizable Gaussian Multipole Model.

Zhao S, Wei H, Cieplak P, Duan Y, Luo R J Chem Theory Comput. 2022; 18(10):6172-6188.

PMID: 36094401 PMC: 10152986. DOI: 10.1021/acs.jctc.2c00710.


References
1.
Swanson J, Adcock S, McCammon J . Optimized Radii for Poisson-Boltzmann Calculations with the AMBER Force Field. J Chem Theory Comput. 2015; 1(3):484-93. DOI: 10.1021/ct049834o. View

2.
Patel S, Brooks 3rd C . CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations. J Comput Chem. 2003; 25(1):1-15. DOI: 10.1002/jcc.10355. View

3.
Gilson M . Theory of electrostatic interactions in macromolecules. Curr Opin Struct Biol. 1995; 5(2):216-23. DOI: 10.1016/0959-440x(95)80079-4. View

4.
Swanson J, Mongan J, McCammon J . Limitations of atom-centered dielectric functions in implicit solvent models. J Phys Chem B. 2006; 109(31):14769-72. DOI: 10.1021/jp052883s. View

5.
Huang D, Chandler D . Temperature and length scale dependence of hydrophobic effects and their possible implications for protein folding. Proc Natl Acad Sci U S A. 2000; 97(15):8324-7. PMC: 26946. DOI: 10.1073/pnas.120176397. View