» Articles » PMID: 18468618

Acrolein Consumption Exacerbates Myocardial Ischemic Injury and Blocks Nitric Oxide-induced PKCepsilon Signaling and Cardioprotection

Overview
Date 2008 May 13
PMID 18468618
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

Aldehydes are common reactive constituents of food, water and air. Several food aldehydes are potentially carcinogenic and toxic; however, the direct effects of dietary aldehydes on cardiac ischemia-reperfusion (IR) injury are unknown. We tested the hypothesis that dietary consumption of aldehydes modulates myocardial IR injury and preconditioning. Mice were gavage-fed the alpha, beta-unsaturated aldehyde acrolein (5mg/kg) or water (vehicle) 24h prior to a 30-min coronary artery occlusion and 24-hour reperfusion. Myocardial infarct size was significantly increased in acrolein-treated mice, demonstrating that acute acrolein exposure worsens cardiac IR injury. Furthermore, late cardioprotection afforded by the nitric oxide (NO) donor diethylenetriamine/NO (DETA/NO; dose: 0.1mg/kg x 4, i.v.) was abrogated by the administration of acrolein 2h prior to DETA/NO treatment, indicating that oral acrolein impairs NO donor-induced late preconditioning. To examine potential intracellular targets of aldehydes, we investigated the impact of acrolein on mitochondrial PKCepsilon signaling in the heart. Acrolein-protein adducts were formed in a dose-dependent manner in isolated cardiac mitochondria in vitro and specific acrolein-PKCepsilon adducts were present in cardiac mitochondrial fractions following acrolein exposure in vivo, demonstrating that mitochondria are major targets of aldehyde toxicity. Furthermore, DETA/NO preconditioning induced both PKCepsilon translocation and increased mitochondrial PKCepsilon localization. Both of these responses were blocked by acrolein pretreatment, providing evidence that aldehydes disrupt cardioprotective signaling events involving PKCepsilon. Consumption of an aldehyde-rich diet could exacerbate cardiac IR injury and block NO donor-induced cardioprotection via mechanisms that disrupt PKCepsilon signaling.

Citing Articles

Impact of Transcutaneous Auricular Vagus Nerve Stimulation on Spatial Learning and Memory in Acrolein-Induced Alzheimer's Disease-Like Hippocampal Neuronal Damage in Wistar Rats.

Kamoga R, Z Rukundo G, Kalungi S, Obungoloch J, Obua C, Ihunwo A Cureus. 2025; 17(1):e78285.

PMID: 40026922 PMC: 11872113. DOI: 10.7759/cureus.78285.


Understanding the Cardiovascular Fallout of E-cigarettes: A Comprehensive Review of the Literature.

Chaturvedi D, Attia Hussein Mahmoud H, Isaac A, Atla R, Shakeel J, Heredia M Cureus. 2024; 16(6):e63489.

PMID: 39081430 PMC: 11287103. DOI: 10.7759/cureus.63489.


Acrolein Induces Changes in Cell Membrane and Cytosol Proteins of Erythrocytes.

Kopera M, Gwozdzinski K, Pieniazek A Molecules. 2024; 29(11).

PMID: 38893395 PMC: 11173626. DOI: 10.3390/molecules29112519.


E-Cigarettes and Associated Health Risks: An Update on Cancer Potential.

Sahu R, Shah K, Malviya R, Paliwal D, Sagar S, Singh S Adv Respir Med. 2023; 91(6):516-531.

PMID: 37987300 PMC: 10660480. DOI: 10.3390/arm91060038.


The Role of Acrolein in Neurodegenerative Diseases and Its Protective Strategy.

Chang X, Wang Y, Zheng B, Chen Y, Xie J, Song Y Foods. 2023; 11(20).

PMID: 37430952 PMC: 9601306. DOI: 10.3390/foods11203203.