Haut B, Karamaoun C, Rigaut C
PLoS One. 2025; 20(1):e0311667.
PMID: 39883668
PMC: 11781630.
DOI: 10.1371/journal.pone.0311667.
Asgharian B, Price O, Borojeni A, Kuprat A, Colby S, Singh R
J Aerosol Sci. 2022; 166.
PMID: 36405567
PMC: 9671400.
DOI: 10.1016/j.jaerosci.2022.106050.
Francis I, Saha S
Heliyon. 2022; 8(10):e11026.
PMID: 36281407
PMC: 9587277.
DOI: 10.1016/j.heliyon.2022.e11026.
Yang Y, Bai W, Dong J, Lv H, Zhu Y
Biomicrofluidics. 2022; 16(5):054101.
PMID: 36097514
PMC: 9451617.
DOI: 10.1063/5.0098302.
Dong J, Yang Y, Zhu Y
Biomicrofluidics. 2022; 16(2):021502.
PMID: 35464135
PMC: 9010052.
DOI: 10.1063/5.0084415.
Microparticle Transport and Sedimentation in a Rhythmically Expanding Alveolar Chip.
Zhang W, Dong J, Lv H, Bai W, Lu H, Noack B
Micromachines (Basel). 2022; 13(3).
PMID: 35334776
PMC: 8949128.
DOI: 10.3390/mi13030485.
Modeling of the Transport and Exchange of a Gas Species in Lungs With an Asymmetric Branching Pattern. Application to Nitric Oxide.
Buess A, Van Muylem A, Nonclercq A, Haut B
Front Physiol. 2020; 11:570015.
PMID: 33362572
PMC: 7758446.
DOI: 10.3389/fphys.2020.570015.
Flow and Particle Dispersion in Lung Acini: Effect of Geometric and Dynamic Parameters During Synchronous Ventilation.
Chhabra S, Prasad A
J Fluids Eng. 2020; 133(7):071001.
PMID: 32327863
PMC: 7164511.
DOI: 10.1115/1.4004362.
Ventilation and Perfusion at the Alveolar Level: Insights From Lung Intravital Microscopy.
Matuszak J, Tabuchi A, Kuebler W
Front Physiol. 2020; 11:291.
PMID: 32308629
PMC: 7145899.
DOI: 10.3389/fphys.2020.00291.
Aerosol delivery into small anatomical airway model through spontaneous engineered breathing.
Lin C, Hsiao Y, Nath P, Huang J
Biomicrofluidics. 2019; 13(4):044109.
PMID: 31406554
PMC: 6685788.
DOI: 10.1063/1.5121188.
Alveolar dynamics during mechanical ventilation in the healthy and injured lung.
Grune J, Tabuchi A, Kuebler W
Intensive Care Med Exp. 2019; 7(Suppl 1):34.
PMID: 31346797
PMC: 6658629.
DOI: 10.1186/s40635-019-0226-5.
Modelling structural determinants of ventilation heterogeneity: A perturbative approach.
Whitfield C, Horsley A, Jensen O
PLoS One. 2018; 13(11):e0208049.
PMID: 30496317
PMC: 6264152.
DOI: 10.1371/journal.pone.0208049.
Biomimetics of the pulmonary environment : A microfluidics perspective.
Tenenbaum-Katan J, Artzy-Schnirman A, Fishler R, Korin N, Sznitman J
Biomicrofluidics. 2018; 12(4):042209.
PMID: 29887933
PMC: 5973897.
DOI: 10.1063/1.5023034.
Streamline crossing: An essential mechanism for aerosol dispersion in the pulmonary acinus.
Fishler R, Ostrovski Y, Lu C, Sznitman J
J Biomech. 2016; 50:222-227.
PMID: 27871676
PMC: 5198889.
DOI: 10.1016/j.jbiomech.2016.11.043.
The role of anisotropic expansion for pulmonary acinar aerosol deposition.
Hofemeier P, Sznitman J
J Biomech. 2016; 49(14):3543-3548.
PMID: 27614613
PMC: 5075582.
DOI: 10.1016/j.jbiomech.2016.08.025.
A Microfluidic Model of Biomimetically Breathing Pulmonary Acinar Airways.
Fishler R, Sznitman J
J Vis Exp. 2016; (111).
PMID: 27214269
PMC: 4942038.
DOI: 10.3791/53588.
Onset of alveolar recirculation in the developing lungs and its consequence on nanoparticle deposition in the pulmonary acinus.
Henry F, Tsuda A
J Appl Physiol (1985). 2015; 120(1):38-54.
PMID: 26494453
PMC: 4698443.
DOI: 10.1152/japplphysiol.01161.2014.
Particle dynamics and deposition in true-scale pulmonary acinar models.
Fishler R, Hofemeier P, Etzion Y, Dubowski Y, Sznitman J
Sci Rep. 2015; 5:14071.
PMID: 26358580
PMC: 4566083.
DOI: 10.1038/srep14071.
Particle transport and deposition: basic physics of particle kinetics.
Tsuda A, Henry F, Butler J
Compr Physiol. 2013; 3(4):1437-71.
PMID: 24265235
PMC: 4398662.
DOI: 10.1002/cphy.c100085.
Transport of gases between the environment and alveoli--theoretical foundations.
Butler J, Tsuda A
Compr Physiol. 2013; 1(3):1301-16.
PMID: 23733643
PMC: 4382809.
DOI: 10.1002/cphy.c090016.