» Articles » PMID: 18370070

Transposon-mediated Mutagenesis in Somatic Cells: Identification of Transposon-genomic DNA Junctions

Overview
Specialty Molecular Biology
Date 2008 Mar 29
PMID 18370070
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Understanding the genetic basis for tumor formation is crucial for treating cancer. Forward genetic screens using insertional mutagenesis technologies have identified many important tumor suppressor genes and oncogenes in mouse models of human cancer. Traditionally, retroviruses have been used for this purpose, allowing the identification of genes that can cause various forms of leukemia or lymphoma with murine leukemia viruses or mammary cancer with mouse mammary tumor viruses. Recently, the Sleeping Beauty transposon system has emerged as a tool for cancer gene discovery in mouse models of human cancer. Transposons mobilized in the mouse soma can insertionally mutate cancer genes, and the transposon itself serves as a molecular "tag," which facilitates candidate cancer gene identification. We provide an overview of some general issues related to use of Sleeping Beauty for cancer genetic studies and present here the polymerase chain reaction-based method for cloning transposon-tagged sequences from tumors.

Citing Articles

Histone H3K27 demethylase KDM6A is an epigenetic gatekeeper of mTORC1 signalling in cancer.

Revia S, Seretny A, Wendler L, Banito A, Eckert C, Breuer K Gut. 2021; 71(8):1613-1628.

PMID: 34509979 PMC: 9279849. DOI: 10.1136/gutjnl-2021-325405.


Sleeping Beauty Mouse Models of Cancer: Microenvironmental Influences on Cancer Genetics.

Guimaraes-Young A, Feddersen C, Dupuy A Front Oncol. 2019; 9:611.

PMID: 31338332 PMC: 6629774. DOI: 10.3389/fonc.2019.00611.


Sleeping beauty genetic screen identifies miR-23b::BTBD7 gene interaction as crucial for colorectal cancer metastasis.

Grisard E, Coan M, Cesaratto L, Rigo I, Zandona L, Paulitti A EBioMedicine. 2019; 46:79-93.

PMID: 31303496 PMC: 6710852. DOI: 10.1016/j.ebiom.2019.06.044.


Ex Vivo Transposon-Mediated Genetic Screens for Cancer Gene Discovery.

ODonnell K, Guo Y, Suresh S, Updegraff B, Zhou X Methods Mol Biol. 2018; 1907:145-157.

PMID: 30542998 PMC: 6296821. DOI: 10.1007/978-1-4939-8967-6_12.


Identifying transposon insertions and their effects from RNA-sequencing data.

de Ruiter J, Kas S, Schut E, Adams D, Koudijs M, Wessels L Nucleic Acids Res. 2017; 45(12):7064-7077.

PMID: 28575524 PMC: 5499543. DOI: 10.1093/nar/gkx461.


References
1.
Mikkers H, Allen J, Knipscheer P, Romeijn L, Hart A, Vink E . High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat Genet. 2002; 32(1):153-9. DOI: 10.1038/ng950. View

2.
Neil J, Cameron E . Retroviral insertion sites and cancer: fountain of all knowledge?. Cancer Cell. 2002; 2(4):253-5. DOI: 10.1016/s1535-6108(02)00158-7. View

3.
Wu X, Luke B, Burgess S . Redefining the common insertion site. Virology. 2005; 344(2):292-5. DOI: 10.1016/j.virol.2005.08.047. View

4.
Hui E, Wang P, Lo S . Strategies for cloning unknown cellular flanking DNA sequences from foreign integrants. Cell Mol Life Sci. 1999; 54(12):1403-11. PMC: 11147312. DOI: 10.1007/s000180050262. View

5.
Dupuy A, Akagi K, Largaespada D, Copeland N, Jenkins N . Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature. 2005; 436(7048):221-6. DOI: 10.1038/nature03691. View