Ayyagari R, Borooah S, Durham T, Gelfman C, Bowman A
Transl Vis Sci Technol. 2024; 13(10):16.
PMID: 39382871
PMC: 11469193.
DOI: 10.1167/tvst.13.10.16.
Wang Y, Wang J, Jiang Y, Zhu D, Ouyang J, Yi Z
Int J Mol Sci. 2023; 24(7).
PMID: 37047703
PMC: 10095211.
DOI: 10.3390/ijms24076728.
Peeters M, Khan M, Rooijakkers A, Mulders T, Haer-Wigman L, Boon C
Hum Mutat. 2021; 42(12):1521-1547.
PMID: 34411390
PMC: 9290825.
DOI: 10.1002/humu.24275.
Strayve D, Makia M, Kakakhel M, Sakthivel H, Conley S, Al-Ubaidi M
Hum Mol Genet. 2020; 29(16):2708-2722.
PMID: 32716032
PMC: 7530533.
DOI: 10.1093/hmg/ddaa160.
Chakraborty D, Strayve D, Makia M, Conley S, Kakahel M, Al-Ubaidi M
FASEB J. 2020; 34(1):1211-1230.
PMID: 31914632
PMC: 7592630.
DOI: 10.1096/fj.201901888R.
Genome Editing as a Treatment for the Most Prevalent Causative Genes of Autosomal Dominant Retinitis Pigmentosa.
Diakatou M, Manes G, Bocquet B, Meunier I, Kalatzis V
Int J Mol Sci. 2019; 20(10).
PMID: 31126147
PMC: 6567127.
DOI: 10.3390/ijms20102542.
Peripherin-2 and Rom-1 have opposing effects on rod outer segment targeting of retinitis pigmentosa-linked peripherin-2 mutants.
Bohm S, Riedmayr L, Nguyen O, Giessl A, Liebscher T, Butz E
Sci Rep. 2017; 7(1):2321.
PMID: 28539581
PMC: 5443838.
DOI: 10.1038/s41598-017-02514-5.
PRPH2/RDS and ROM-1: Historical context, current views and future considerations.
Stuck M, Conley S, Naash M
Prog Retin Eye Res. 2016; 52:47-63.
PMID: 26773759
PMC: 4842342.
DOI: 10.1016/j.preteyeres.2015.12.002.
Gene therapy for PRPH2-associated ocular disease: challenges and prospects.
Conley S, Naash M
Cold Spring Harb Perspect Med. 2014; 4(11):a017376.
PMID: 25167981
PMC: 4208711.
DOI: 10.1101/cshperspect.a017376.
Overexpression of retinal degeneration slow (RDS) protein adversely affects rods in the rd7 model of enhanced S-cone syndrome.
Chakraborty D, Conley S, Naash M
PLoS One. 2013; 8(5):e63321.
PMID: 23650562
PMC: 3641132.
DOI: 10.1371/journal.pone.0063321.
A single valine residue plays an essential role in peripherin/rds targeting to photoreceptor outer segments.
Salinas R, Baker S, Gospe 3rd S, Arshavsky V
PLoS One. 2013; 8(1):e54292.
PMID: 23342122
PMC: 3544770.
DOI: 10.1371/journal.pone.0054292.
Expression of wild-type Rp1 protein in Rp1 knock-in mice rescues the retinal degeneration phenotype.
Liu Q, Collin R, Cremers F, den Hollander A, van den Born L, Pierce E
PLoS One. 2012; 7(8):e43251.
PMID: 22927954
PMC: 3424119.
DOI: 10.1371/journal.pone.0043251.
Nanoparticles for retinal gene therapy.
Conley S, Naash M
Prog Retin Eye Res. 2010; 29(5):376-97.
PMID: 20452457
PMC: 2907107.
DOI: 10.1016/j.preteyeres.2010.04.004.
Gene therapy in the Retinal Degeneration Slow model of retinitis pigmentosa.
Cai X, Conley S, Naash M
Adv Exp Med Biol. 2010; 664:611-9.
PMID: 20238065
PMC: 3161507.
DOI: 10.1007/978-1-4419-1399-9_70.
Biochemical analysis of phenotypic diversity associated with mutations in codon 244 of the retinal degeneration slow gene.
Conley S, Stricker H, Naash M
Biochemistry. 2010; 49(5):905-11.
PMID: 20055437
PMC: 2937569.
DOI: 10.1021/bi901622w.
Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa.
Cai X, Conley S, Nash Z, Fliesler S, Cooper M, Naash M
FASEB J. 2009; 24(4):1178-91.
PMID: 19952284
PMC: 2845431.
DOI: 10.1096/fj.09-139147.