» Articles » PMID: 18184714

Cysteines Flanking the Internal Fusion Peptide Are Required for the Avian Sarcoma/leukosis Virus Glycoprotein to Mediate the Lipid Mixing Stage of Fusion with High Efficiency

Overview
Journal J Virol
Date 2008 Jan 11
PMID 18184714
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

We previously showed that the cysteines flanking the internal fusion peptide of the avian sarcoma/leukosis virus subtype A (ASLV-A) Env (EnvA) are important for infectivity and cell-cell fusion. Here we define the stage of fusion at which the cysteines are required. The flanking cysteines are dispensable for receptor-triggered membrane association but are required for the lipid mixing step of fusion, which, interestingly, displays a high pH onset and a biphasic profile. Second-site mutations that partially restore infection partially restore lipid mixing. These findings indicate that the cysteines flanking the internal fusion peptide of EnvA (and perhaps by analogy Ebola virus glycoprotein) are important for the foldback stage of the conformational changes that lead to membrane merger.

Citing Articles

Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells.

Millet J, Whittaker G Virology. 2017; 517:3-8.

PMID: 29275820 PMC: 7112017. DOI: 10.1016/j.virol.2017.12.015.


Retrovirus entry by endocytosis and cathepsin proteases.

Kubo Y, Hayashi H, Matsuyama T, Sato H, Yamamoto N Adv Virol. 2013; 2012:640894.

PMID: 23304142 PMC: 3523128. DOI: 10.1155/2012/640894.


Visualization of the two-step fusion process of the retrovirus avian sarcoma/leukosis virus by cryo-electron tomography.

Cardone G, Brecher M, Fontana J, Winkler D, Butan C, White J J Virol. 2012; 86(22):12129-37.

PMID: 22933285 PMC: 3486472. DOI: 10.1128/JVI.01880-12.


Binding of more than one Tva800 molecule is required for ASLV-A entry.

Gray E, Illingworth C, Coffin J, Stoye J Retrovirology. 2011; 8:96.

PMID: 22099981 PMC: 3267798. DOI: 10.1186/1742-4690-8-96.


Cathepsin cleavage potentiates the Ebola virus glycoprotein to undergo a subsequent fusion-relevant conformational change.

Brecher M, Schornberg K, Delos S, Fusco M, Saphire E, White J J Virol. 2011; 86(1):364-72.

PMID: 22031933 PMC: 3255896. DOI: 10.1128/JVI.05708-11.


References
1.
Federspiel M, Hughes S . Retroviral gene delivery. Methods Cell Biol. 1997; 52:179-214. View

2.
Landau N, Littman D . Packaging system for rapid production of murine leukemia virus vectors with variable tropism. J Virol. 1992; 66(8):5110-3. PMC: 241381. DOI: 10.1128/JVI.66.8.5110-5113.1992. View

3.
Takada A, Robison C, Goto H, Sanchez A, Murti K, Whitt M . A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A. 1998; 94(26):14764-9. PMC: 25111. DOI: 10.1073/pnas.94.26.14764. View

4.
Weissenhorn W, Carfi A, Lee K, Skehel J, Wiley D . Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Mol Cell. 1998; 2(5):605-16. DOI: 10.1016/s1097-2765(00)80159-8. View

5.
Baker K, Dutch R, Lamb R, Jardetzky T . Structural basis for paramyxovirus-mediated membrane fusion. Mol Cell. 1999; 3(3):309-19. DOI: 10.1016/s1097-2765(00)80458-x. View