Marques H
J Biol Inorg Chem. 2024; 29(7-8):641-683.
PMID: 39424709
PMC: 11638306.
DOI: 10.1007/s00775-024-02076-8.
Xiong J, Reed C, Lavina B, Hu M, Zhao J, Alp E
Chem Sci. 2024; .
PMID: 39296996
PMC: 11403573.
DOI: 10.1039/d4sc03396e.
Babicz Jr J, Rogers M, DeWeese D, Sutherlin K, Banerjee R, Bottger L
J Am Chem Soc. 2023; 145(28):15230-15250.
PMID: 37414058
PMC: 10804917.
DOI: 10.1021/jacs.3c02242.
Chen M, Zhu J, Mu W, Guo L
Genes Dis. 2023; 10(3):877-890.
PMID: 37396540
PMC: 10308199.
DOI: 10.1016/j.gendis.2021.12.023.
Traore E, Liu A
ACS Catal. 2022; 12(10):6191-6208.
PMID: 35990992
PMC: 9387357.
DOI: 10.1021/acscatal.1c04770.
Isolating Fe-O Intermediates in Dioxygen Activation by Iron Porphyrin Complexes.
Lu X, Wang S, Qin J
Molecules. 2022; 27(15).
PMID: 35897870
PMC: 9332324.
DOI: 10.3390/molecules27154690.
The Apparently Unreactive Substrate Facilitates the Electron Transfer for Dioxygen Activation in Rieske Dioxygenases.
Csizi K, Eckert L, Brunken C, Hofstetter T, Reiher M
Chemistry. 2022; 28(16):e202103937.
PMID: 35072969
PMC: 9306888.
DOI: 10.1002/chem.202103937.
Dihydroxyacetone valorization with high atom efficiency via controlling radical oxidation pathways over natural mineral-inspired catalyst.
Wang J, Dai X, Wang H, Liu H, Rabeah J, Bruckner A
Nat Commun. 2021; 12(1):6840.
PMID: 34824262
PMC: 8617048.
DOI: 10.1038/s41467-021-27240-5.
Dioxygen Activation and Pyrrole α-Cleavage with Calix[4]pyrrolato Aluminates: Enzyme Model by Structural Constraint.
Sigmund L, Ehlert C, Enders M, Graf J, Grynova G, Greb L
Angew Chem Int Ed Engl. 2021; 60(28):15632-15640.
PMID: 33955154
PMC: 8362023.
DOI: 10.1002/anie.202104916.
Nature's Machinery, Repurposed: Expanding the Repertoire of Iron-Dependent Oxygenases.
Dunham N, Arnold F
ACS Catal. 2020; 10(20):12239-12255.
PMID: 33282461
PMC: 7710332.
DOI: 10.1021/acscatal.0c03606.
Heme and Nonheme High-Valent Iron and Manganese Oxo Cores in Biological and Abiological Oxidation Reactions.
Guo M, Corona T, Ray K, Nam W
ACS Cent Sci. 2019; 5(1):13-28.
PMID: 30693322
PMC: 6346628.
DOI: 10.1021/acscentsci.8b00698.
Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins.
Huang X, Groves J
Chem Rev. 2017; 118(5):2491-2553.
PMID: 29286645
PMC: 5855008.
DOI: 10.1021/acs.chemrev.7b00373.
Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics.
Wang Y, Li J, Liu A
J Biol Inorg Chem. 2017; 22(2-3):395-405.
PMID: 28084551
PMC: 5360381.
DOI: 10.1007/s00775-017-1436-5.
Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C-H activation.
Huang X, Groves J
J Biol Inorg Chem. 2016; 22(2-3):185-207.
PMID: 27909920
PMC: 5350257.
DOI: 10.1007/s00775-016-1414-3.
O Activation by Non-Heme Iron Enzymes.
Solomon E, Goudarzi S, Sutherlin K
Biochemistry. 2016; 55(46):6363-6374.
PMID: 27792301
PMC: 5345855.
DOI: 10.1021/acs.biochem.6b00635.
Valence tautomerism in synthetic models of cytochrome P450.
Das P, Samanta S, McQuarters A, Lehnert N, Dey A
Proc Natl Acad Sci U S A. 2016; 113(24):6611-6.
PMID: 27302948
PMC: 4914151.
DOI: 10.1073/pnas.1600525113.
Spectroscopic and Computational Studies of Nitrile Hydratase: Insights into Geometric and Electronic Structure and the Mechanism of Amide Synthesis.
Light K, Yamanaka Y, Odaka M, Solomon E
Chem Sci. 2015; 6(11):6280-6294.
PMID: 26508996
PMC: 4618400.
DOI: 10.1039/C5SC02012C.
Catalytic Mechanisms of Fe(II)- and 2-Oxoglutarate-dependent Oxygenases.
Martinez S, Hausinger R
J Biol Chem. 2015; 290(34):20702-20711.
PMID: 26152721
PMC: 4543632.
DOI: 10.1074/jbc.R115.648691.
Crystal structures of alkylperoxo and anhydride intermediates in an intradiol ring-cleaving dioxygenase.
Knoot C, Purpero V, Lipscomb J
Proc Natl Acad Sci U S A. 2014; 112(2):388-93.
PMID: 25548185
PMC: 4299229.
DOI: 10.1073/pnas.1419118112.
Excited state potential energy surfaces and their interactions in Fe(IV)=O active sites.
Srnec M, Wong S, Solomon E
Dalton Trans. 2014; 43(47):17567-77.
PMID: 24916844
PMC: 4229428.
DOI: 10.1039/c4dt01366b.