» Articles » PMID: 17977568

Model of Hidden Heterogeneity in Longitudinal Data

Overview
Date 2007 Nov 6
PMID 17977568
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Variables measured in longitudinal studies of aging and longevity do not exhaust the list of all factors affecting health and mortality transitions. Unobserved factors generate hidden variability in susceptibility to diseases and death in populations and in age trajectories of longitudinally measured indices. Effects of such heterogeneity can be manifested not only in observed hazard rates but also in average trajectories of measured indices. Although effects of hidden heterogeneity on observed mortality rates are widely discussed, their role in forming age patterns of other aging-related characteristics (average trajectories of physiological state, stress resistance, etc.) is less clear. We propose a model of hidden heterogeneity to analyze its effects in longitudinal data. The approach takes the presence of hidden heterogeneity into account and incorporates several major concepts currently developing in aging research (allostatic load, aging-associated decline in adaptive capacity and stress-resistance, age-dependent physiological norms). Simulation experiments confirm identifiability of model's parameters.

Citing Articles

AFT survival model to capture the rate of aging and age-specific mortality trajectories among first-allogeneic hematopoietic stem cells transplant patients.

Lin Y PLoS One. 2018; 13(3):e0193287.

PMID: 29499050 PMC: 5834196. DOI: 10.1371/journal.pone.0193287.


A genetic stochastic process model for genome-wide joint analysis of biomarker dynamics and disease susceptibility with longitudinal data.

He L, Zhbannikov I, Arbeev K, Yashin A, Kulminski A Genet Epidemiol. 2017; 41(7):620-635.

PMID: 28636232 PMC: 5643257. DOI: 10.1002/gepi.22058.


stpm: an R package for stochastic process model.

Zhbannikov I, Arbeev K, Akushevich I, Stallard E, Yashin A BMC Bioinformatics. 2017; 18(1):125.

PMID: 28231764 PMC: 5324240. DOI: 10.1186/s12859-017-1538-7.


How Genes Modulate Patterns of Aging-Related Changes on the Way to 100: Biodemographic Models and Methods in Genetic Analyses of Longitudinal Data.

Yashin A, Arbeev K, Wu D, Arbeeva L, Kulminski A, Kulminskaya I N Am Actuar J. 2016; 20(3):201-232.

PMID: 27773987 PMC: 5070546. DOI: 10.1080/10920277.2016.1178588.


Examining mortality risk and rate of ageing among Polish Olympic athletes: a survival follow-up from 1924 to 2012.

Lin Y, Gajewski A, Poznanska A BMJ Open. 2016; 6(4):e010965.

PMID: 27091824 PMC: 4838735. DOI: 10.1136/bmjopen-2015-010965.


References
1.
Westin S, Heath I . Thresholds for normal blood pressure and serum cholesterol. BMJ. 2005; 330(7506):1461-2. PMC: 558444. DOI: 10.1136/bmj.330.7506.1461. View

2.
Woodbury M . A random-walk model of human mortality and aging. Theor Popul Biol. 1977; 11(1):37-48. DOI: 10.1016/0040-5809(77)90005-3. View

3.
Seeman T, McEwen B, Rowe J, Singer B . Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proc Natl Acad Sci U S A. 2001; 98(8):4770-5. PMC: 31909. DOI: 10.1073/pnas.081072698. View

4.
Yashin A, Arbeev K, Akushevich I, Kulminski A, Akushevich L, Ukraintseva S . Stochastic model for analysis of longitudinal data on aging and mortality. Math Biosci. 2007; 208(2):538-51. PMC: 2084381. DOI: 10.1016/j.mbs.2006.11.006. View

5.
DAWBER T, Kannel W . An epidemiologic study of heart disease: the Framingham study. Nutr Rev. 1958; 16(1):1-4. DOI: 10.1111/j.1753-4887.1958.tb00605.x. View