Meis1 is an Essential and Rate-limiting Regulator of MLL Leukemia Stem Cell Potential
Overview
Authors
Affiliations
Oncogenic mutations of the MLL histone methyltransferase confer an unusual ability to transform non-self-renewing myeloid progenitors into leukemia stem cells (LSCs) by mechanisms that remain poorly defined. Misregulation of Hox genes is likely to be critical for LSC induction and maintenance but alone it does not recapitulate the phenotype and biology of MLL leukemias, which are clinically heterogeneous--presumably reflecting differences in LSC biology and/or frequency. TALE (three-amino-acid loop extension) class homeodomain proteins of the Pbx and Meis families are also misexpressed in this context, and we thus employed knockout, knockdown, and dominant-negative genetic techniques to investigate the requirements and contributions of these factors in MLL oncoprotein-induced acute myeloid leukemia. Our studies show that induction and maintenance of MLL transformation requires Meis1 and is codependent on the redundant contributions of Pbx2 and Pbx3. Meis1 in particular serves a major role in establishing LSC potential, and determines LSC frequency by quantitatively regulating the extent of self-renewal, differentiation arrest, and cycling, as well as the rate of in vivo LSC generation from myeloid progenitors. Thus, TALE proteins are critical downstream effectors within an essential homeoprotein network that serves a rate-limiting regulatory role in MLL leukemogenesis.
Giarolla J, Holdaway K, Nazari M, Aiad L, Sarkar B, Georg G Future Med Chem. 2025; 17(5):607-627.
PMID: 40034037 PMC: 11901406. DOI: 10.1080/17568919.2025.2463868.
Revumenib Revises the Treatment Landscape for -r Leukemia.
Heikamp E, Armstrong S J Clin Oncol. 2024; 43(1):85-88.
PMID: 39509656 PMC: 11771282. DOI: 10.1200/JCO-24-01265.
Aberrant stem cell and developmental programs in pediatric leukemia.
Ling R, Cross J, Roy A Front Cell Dev Biol. 2024; 12:1372899.
PMID: 38601080 PMC: 11004259. DOI: 10.3389/fcell.2024.1372899.
Transcriptional control of leukemogenesis by the chromatin reader SGF29.
Barbosa K, Deshpande A, Perales M, Xiang P, Murad R, Pramod A Blood. 2023; 143(8):697-712.
PMID: 38048593 PMC: 10900139. DOI: 10.1182/blood.2023021234.
The human leukemic oncogene MLL-AF4 promotes hyperplastic growth of hematopoietic tissues in larvae.
Johannessen J, Formica M, Haukeland A, Brathen N, Al Outa A, Aarsund M iScience. 2023; 26(10):107726.
PMID: 37720104 PMC: 10504488. DOI: 10.1016/j.isci.2023.107726.