» Articles » PMID: 17919725

How Do the Basal Ganglia Contribute to Categorization? Their Roles in Generalization, Response Selection, and Learning Via Feedback

Overview
Date 2007 Oct 9
PMID 17919725
Citations 118
Authors
Affiliations
Soon will be listed here.
Abstract

This article examines how independent corticostriatal loops linking basal ganglia with cerebral cortex contribute to visual categorization. The first aspect of categorization discussed is the role of the visual corticostriatal loop, which connects the visual cortex and the body/tail of the caudate, in mapping visual stimuli to categories, including evaluating the degree to which this loop may generalize across individual category members. The second aspect of categorization discussed is the selection of appropriate actions or behaviors on the basis of category membership, and the role of the visual corticostriatal loop output and the motor corticostriatal loop, which connects motor planning areas with the putamen, in action selection. The third aspect of categorization discussed is how categories are learned with the aid of feedback linked dopaminergic projections to the basal ganglia. These projections underlie corticostriatal synaptic plasticity across the basal ganglia, and also serve as input to the executive and motivational corticostriatal loops that play a role in strategic use of feedback.

Citing Articles

Emergence of Categorical Representations in Parietal and Ventromedial Prefrontal Cortex across Extended Training.

Liu Z, Zhang Y, Wen C, Yuan J, Zhang J, Seger C J Neurosci. 2025; 45(9).

PMID: 39746819 PMC: 11867003. DOI: 10.1523/JNEUROSCI.1315-24.2024.


Multivariate and regional age-related change in basal ganglia iron in neonates.

Cabral L, Calabro F, Foran W, Parr A, Ojha A, Rasmussen J Cereb Cortex. 2023; 34(1).

PMID: 38059685 PMC: 11494441. DOI: 10.1093/cercor/bhad456.


A global multicohort study to map subcortical brain development and cognition in infancy and early childhood.

Alex A, Aguate F, Botteron K, Buss C, Chong Y, Dager S Nat Neurosci. 2023; 27(1):176-186.

PMID: 37996530 PMC: 10774128. DOI: 10.1038/s41593-023-01501-6.


Gestational and postnatal age associations for striatal tissue iron deposition in early infancy.

Cabral L, Calabro F, Rasmussen J, Foran W, Moore L, Graham A bioRxiv. 2023; .

PMID: 37425933 PMC: 10327226. DOI: 10.1101/2023.06.30.547249.


Flexible specificity of memory in depends on a comparison between choices.

Modi M, Rajagopalan A, Rouault H, Aso Y, Turner G Elife. 2023; 12.

PMID: 37318123 PMC: 10332810. DOI: 10.7554/eLife.80923.


References
1.
Smith J, McDowall J . When artificial grammar acquisition in Parkinson's disease is impaired: the case of learning via trial-by-trial feedback. Brain Res. 2005; 1067(1):216-28. DOI: 10.1016/j.brainres.2005.10.025. View

2.
Schultz W, Apicella P, LJUNGBERG T . Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci. 1993; 13(3):900-13. PMC: 6576600. View

3.
Barnes T, Kubota Y, Hu D, Jin D, Graybiel A . Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature. 2005; 437(7062):1158-61. DOI: 10.1038/nature04053. View

4.
Nomura E, Maddox W, Filoteo J, Ing A, Gitelman D, Parrish T . Neural correlates of rule-based and information-integration visual category learning. Cereb Cortex. 2006; 17(1):37-43. DOI: 10.1093/cercor/bhj122. View

5.
Lehericy S, Bardinet E, Tremblay L, Van de Moortele P, Pochon J, Dormont D . Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cereb Cortex. 2005; 16(2):149-61. DOI: 10.1093/cercor/bhi089. View