» Articles » PMID: 17908209

LplA1-dependent Utilization of Host Lipoyl Peptides Enables Listeria Cytosolic Growth and Virulence

Overview
Journal Mol Microbiol
Date 2007 Oct 3
PMID 17908209
Citations 37
Authors
Affiliations
Soon will be listed here.
Abstract

The bacterial pathogen Listeria monocytogenes replicates within the cytosol of mammalian cells. Mechanisms by which the bacterium exploits the host cytosolic environment for essential nutrients are poorly defined. L. monocytogenes is a lipoate auxotroph and must scavenge this critical cofactor, using lipoate ligases to facilitate attachment of the lipoyl moiety to metabolic enzyme complexes. Although the L. monocytogenes genome encodes two putative lipoate ligases, LplA1 and LplA2, intracellular replication and virulence require only LplA1. Here we show that LplA1 enables utilization of host-derived lipoyl peptides by L. monocytogenes. LplA1 is dispensable for growth in the presence of free lipoate, but necessary for growth on low concentrations of mammalian lipoyl peptides. Furthermore, we demonstrate that the intracellular growth defect of the DeltalplA1 mutant is rescued by addition of exogenous lipoic acid to host cells, suggesting that L. monocytogenes dependence on LplA1 is dictated by limiting concentrations of available host lipoyl substrates. Thus, the ability of L. monocytogenes and other intracellular pathogens to efficiently use host lipoyl peptides as a source of lipoate may be a requisite adaptation for life within the mammalian cell.

Citing Articles

Substrate Analogues Entering the Lipoic Acid Salvage Pathway via Lipoate-Protein Ligase 2 Interfere with Virulence.

Scattolini A, Grammatoglou K, Nikitjuka A, Jirgensons A, Mansilla M, Windshugel B ACS Infect Dis. 2024; 10(6):2172-2182.

PMID: 38724014 PMC: 11184557. DOI: 10.1021/acsinfecdis.4c00148.


A Chemical Proteomic Strategy Reveals Inhibitors of Lipoate Salvage in Bacteria and Parasites.

Dienemann J, Chen S, Hitzenberger M, Sievert M, Hacker S, Prigge S Angew Chem Int Ed Engl. 2023; 62(31):e202304533.

PMID: 37249408 PMC: 10896624. DOI: 10.1002/anie.202304533.


Two Permeases Associated with the Multifunctional CtaP Cysteine Transport System in Listeria monocytogenes Play Distinct Roles in Pathogenesis.

Vaval Taylor D, Xayarath B, Freitag N Microbiol Spectr. 2023; 11(3):e0331722.

PMID: 37199604 PMC: 10269559. DOI: 10.1128/spectrum.03317-22.


Egress of Listeria monocytogenes from Mesenteric Lymph Nodes Depends on Intracellular Replication and Cell-to-Cell Spread.

Tucker J, Cho J, Albrecht T, Ferrell J, DOrazio S Infect Immun. 2023; 91(4):e0006423.

PMID: 36916918 PMC: 10112146. DOI: 10.1128/iai.00064-23.


Human Listeriosis.

Koopmans M, Brouwer M, Vazquez-Boland J, van de Beek D Clin Microbiol Rev. 2022; 36(1):e0006019.

PMID: 36475874 PMC: 10035648. DOI: 10.1128/cmr.00060-19.


References
1.
Jiang Y, Cronan J . Expression cloning and demonstration of Enterococcus faecalis lipoamidase (pyruvate dehydrogenase inactivase) as a Ser-Ser-Lys triad amidohydrolase. J Biol Chem. 2004; 280(3):2244-56. DOI: 10.1074/jbc.M408612200. View

2.
Baker H, DeAngelis B, Baker E, Hutner S . A practical assay of lipoate in biologic fluids and liver in health and disease. Free Radic Biol Med. 1998; 25(4-5):473-9. DOI: 10.1016/s0891-5849(98)00087-2. View

3.
Crawford M, Thomsen-Zieger N, Ray M, Schachtner J, Roos D, Seeber F . Toxoplasma gondii scavenges host-derived lipoic acid despite its de novo synthesis in the apicoplast. EMBO J. 2006; 25(13):3214-22. PMC: 1500979. DOI: 10.1038/sj.emboj.7601189. View

4.
Auerbuch V, Lenz L, Portnoy D . Development of a competitive index assay to evaluate the virulence of Listeria monocytogenes actA mutants during primary and secondary infection of mice. Infect Immun. 2001; 69(9):5953-7. PMC: 98721. DOI: 10.1128/IAI.69.9.5953-5957.2001. View

5.
Akiba S, Matsugo S, Packer L, Konishi T . Assay of protein-bound lipoic acid in tissues by a new enzymatic method. Anal Biochem. 1998; 258(2):299-304. DOI: 10.1006/abio.1998.2615. View