Dabare P, Wickramasinghe P, Waidyatilaka I, Devi S, de Lanerolle Dias M, Wickremasinghe R
Eur J Clin Nutr. 2025; .
PMID: 39966666
DOI: 10.1038/s41430-025-01579-0.
Dabare P, Wickramasinghe P, Waidyatilaka I, Devi S, Kurpad A, Samaranayake D
Nutrients. 2023; 15(4).
PMID: 36839264
PMC: 9965962.
DOI: 10.3390/nu15040906.
Kim N, Park J
Clin Exp Pediatr. 2022; 66(2):54-65.
PMID: 36265521
PMC: 9899554.
DOI: 10.3345/cep.2022.00472.
Liu H, Li Q, Li Y, Wang Y, Huang Y, Bao D
Front Public Health. 2022; 10:950074.
PMID: 36159256
PMC: 9496871.
DOI: 10.3389/fpubh.2022.950074.
Teramoto K, Otoki K, Muramatsu E, Oya C, Kataoka Y, Igawa S
J Physiol Anthropol. 2022; 41(1):28.
PMID: 35932089
PMC: 9354372.
DOI: 10.1186/s40101-022-00301-4.
Assessment of 24-hour physical behaviour in children and adolescents via wearables: a systematic review of free-living validation studies.
Giurgiu M, Kolb S, Nigg C, Burchartz A, Timm I, Becker M
BMJ Open Sport Exerc Med. 2022; 8(2):e001267.
PMID: 35646389
PMC: 9109110.
DOI: 10.1136/bmjsem-2021-001267.
A systematic review of the validity, reliability, and feasibility of measurement tools used to assess the physical activity and sedentary behaviour of pre-school aged children.
Phillips S, Summerbell C, Hobbs M, Hesketh K, Saxena S, Muir C
Int J Behav Nutr Phys Act. 2021; 18(1):141.
PMID: 34732219
PMC: 8567581.
DOI: 10.1186/s12966-021-01132-9.
Influence of Physical Self-Concept and Motivational Processes on Moderate-to-Vigorous Physical Activity of Adolescents.
Nunez J, Leon J, Valero-Valenzuela A, Conte L, Moreno-Murcia J, Huescar E
Front Psychol. 2021; 12:685612.
PMID: 34475835
PMC: 8406759.
DOI: 10.3389/fpsyg.2021.685612.
Prediction of Physical Activity Intensity with Accelerometry in Young Children.
Tanaka C, Hikihara Y, Ando T, Oshima Y, Usui C, Ohgi Y
Int J Environ Res Public Health. 2019; 16(6).
PMID: 30875871
PMC: 6466383.
DOI: 10.3390/ijerph16060931.
Physical Activity Level Using Doubly-Labeled Water in Relation to Body Composition and Physical Fitness in Preschoolers.
Leppanen M, Henriksson P, Henriksson H, Nystrom C, Llorente-Cantarero F, Lof M
Medicina (Kaunas). 2018; 55(1).
PMID: 30591687
PMC: 6359212.
DOI: 10.3390/medicina55010002.
Evaluation of the wrist-worn ActiGraph wGT3x-BT for estimating activity energy expenditure in preschool children.
Delisle Nystrom C, Pomeroy J, Henriksson P, Forsum E, Ortega F, Maddison R
Eur J Clin Nutr. 2017; 71(10):1212-1217.
PMID: 28745334
DOI: 10.1038/ejcn.2017.114.
The energy expenditure benefits of reallocating sedentary time with physical activity: a systematic review and meta-analysis.
Biswas A, Oh P, Faulkner G, Bonsignore A, Pakosh M, Alter D
J Public Health (Oxf). 2017; 40(2):295-303.
PMID: 28591813
PMC: 6051454.
DOI: 10.1093/pubmed/fdx062.
A Mobile Phone Based Method to Assess Energy and Food Intake in Young Children: A Validation Study against the Doubly Labelled Water Method and 24 h Dietary Recalls.
Nystrom C, Forsum E, Henriksson H, Trolle-Lagerros Y, Larsson C, Maddison R
Nutrients. 2016; 8(1).
PMID: 26784226
PMC: 4728662.
DOI: 10.3390/nu8010050.
Comparisons of prediction equations for estimating energy expenditure in youth.
Kim Y, Crouter S, Lee J, Dixon P, Gaesser G, Welk G
J Sci Med Sport. 2014; 19(1):35-40.
PMID: 25459235
PMC: 4402097.
DOI: 10.1016/j.jsams.2014.10.002.
How far from home? The locations of physical activity in an urban U.S. setting.
Hurvitz P, Moudon A, Kang B, Fesinmeyer M, Saelens B
Prev Med. 2014; 69:181-6.
PMID: 25285750
PMC: 4312253.
DOI: 10.1016/j.ypmed.2014.08.034.
The Use of Refundable Tax Credits to Increase Low-Income Children's After-School Physical Activity Level.
Dunton G, Ebin V, Efrat M, Efrat R, Lane C, Plunkett S
J Phys Act Health. 2014; 12(6):840-53.
PMID: 25184738
PMC: 4348362.
DOI: 10.1123/jpah.2014-0058.
Emerging technologies for assessing physical activity behaviors in space and time.
Hurvitz P, Vernez Moudon A, Kang B, Saelens B, Duncan G
Front Public Health. 2014; 2:2.
PMID: 24479113
PMC: 3904281.
DOI: 10.3389/fpubh.2014.00002.
Predictive validity and classification accuracy of ActiGraph energy expenditure equations and cut-points in young children.
Janssen X, Cliff D, Reilly J, Hinkley T, Jones R, Batterham M
PLoS One. 2013; 8(11):e79124.
PMID: 24244433
PMC: 3823763.
DOI: 10.1371/journal.pone.0079124.
Walking objectively measured: classifying accelerometer data with GPS and travel diaries.
Kang B, Moudon A, Hurvitz P, Reichley L, Saelens B
Med Sci Sports Exerc. 2013; 45(7):1419-28.
PMID: 23439414
PMC: 3674121.
DOI: 10.1249/MSS.0b013e318285f202.
Cross-sectional time series and multivariate adaptive regression splines models using accelerometry and heart rate predict energy expenditure of preschoolers.
Zakeri I, Adolph A, Puyau M, Vohra F, Butte N
J Nutr. 2012; 143(1):114-22.
PMID: 23190760
PMC: 3521457.
DOI: 10.3945/jn.112.168542.