Kataoka R, Hammert W, Yamada Y, Song J, Seffrin A, Kang A
Sports Med. 2023; 54(1):31-48.
PMID: 37787845
DOI: 10.1007/s40279-023-01932-y.
Zhang S, Yan H, Ding J, Wang R, Feng Y, Zhang X
J Cachexia Sarcopenia Muscle. 2023; 14(5):2126-2142.
PMID: 37469245
PMC: 10570112.
DOI: 10.1002/jcsm.13290.
Smith M, Sexton C, Smith K, Osburn S, Godwin J, Beausejour J
J Appl Physiol (1985). 2023; 134(3):491-507.
PMID: 36633866
PMC: 10190845.
DOI: 10.1152/japplphysiol.00605.2022.
Denes L, Kelley C, Wang E
Nat Commun. 2021; 12(1):6079.
PMID: 34707124
PMC: 8551216.
DOI: 10.1038/s41467-021-26383-9.
Aman F, El Khatib E, AlNeaimi A, Mohamed A, Almulla A, Zaidan A
Singapore Med J. 2021; 64(7):415-422.
PMID: 34544215
PMC: 10395806.
DOI: 10.11622/smedj.2021103.
Fusion and beyond: Satellite cell contributions to loading-induced skeletal muscle adaptation.
Murach K, Fry C, Dupont-Versteegden E, McCarthy J, Peterson C
FASEB J. 2021; 35(10):e21893.
PMID: 34480776
PMC: 9293230.
DOI: 10.1096/fj.202101096R.
Skeletal muscle fibers count on nuclear numbers for growth.
Prasad V, Millay D
Semin Cell Dev Biol. 2021; 119:3-10.
PMID: 33972174
PMC: 9070318.
DOI: 10.1016/j.semcdb.2021.04.015.
Exercise and the control of muscle mass in human.
Francaux M, Deldicque L
Pflugers Arch. 2018; 471(3):397-411.
PMID: 30310991
DOI: 10.1007/s00424-018-2217-x.
Early- and later-phases satellite cell responses and myonuclear content with resistance training in young men.
Damas F, Libardi C, Ugrinowitsch C, Vechin F, Lixandrao M, Snijders T
PLoS One. 2018; 13(1):e0191039.
PMID: 29324825
PMC: 5764368.
DOI: 10.1371/journal.pone.0191039.
The development of skeletal muscle hypertrophy through resistance training: the role of muscle damage and muscle protein synthesis.
Damas F, Libardi C, Ugrinowitsch C
Eur J Appl Physiol. 2017; 118(3):485-500.
PMID: 29282529
DOI: 10.1007/s00421-017-3792-9.
Starring or Supporting Role? Satellite Cells and Skeletal Muscle Fiber Size Regulation.
Murach K, Fry C, Kirby T, Jackson J, Lee J, White S
Physiology (Bethesda). 2017; 33(1):26-38.
PMID: 29212890
PMC: 5866409.
DOI: 10.1152/physiol.00019.2017.
"Nutraceuticals" in relation to human skeletal muscle and exercise.
Deane C, Wilkinson D, Phillips B, Smith K, Etheridge T, Atherton P
Am J Physiol Endocrinol Metab. 2017; 312(4):E282-E299.
PMID: 28143855
PMC: 5406990.
DOI: 10.1152/ajpendo.00230.2016.
Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders.
Dayanidhi S, Lieber R
Muscle Nerve. 2014; 50(5):723-32.
PMID: 25186345
PMC: 4206584.
DOI: 10.1002/mus.24441.
The role of satellite cells in muscle hypertrophy.
Blaauw B, Reggiani C
J Muscle Res Cell Motil. 2014; 35(1):3-10.
PMID: 24505026
DOI: 10.1007/s10974-014-9376-y.
Tissue resident stem cells: till death do us part.
Raveh-Amit H, Berzsenyi S, Vas V, Ye D, Dinnyes A
Biogerontology. 2013; 14(6):573-90.
PMID: 24085521
PMC: 3879821.
DOI: 10.1007/s10522-013-9469-9.
Evidence for the contribution of muscle stem cells to nonhypertrophic skeletal muscle remodeling in humans.
Joanisse S, Gillen J, Bellamy L, McKay B, Tarnopolsky M, Gibala M
FASEB J. 2013; 27(11):4596-605.
PMID: 23928822
PMC: 3804745.
DOI: 10.1096/fj.13-229799.
Effects of prostaglandins and COX-inhibiting drugs on skeletal muscle adaptations to exercise.
Trappe T, Liu S
J Appl Physiol (1985). 2013; 115(6):909-19.
PMID: 23539318
PMC: 3764617.
DOI: 10.1152/japplphysiol.00061.2013.
Chronic myopathy due to immunoglobulin light chain amyloidosis.
Manoli I, Kwan J, Wang Q, Rushing E, Tsokos M, Arai A
Mol Genet Metab. 2013; 108(4):249-54.
PMID: 23465863
PMC: 3608108.
DOI: 10.1016/j.ymgme.2013.01.015.
Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training.
Schoenfeld B
Sports Med. 2013; 43(3):179-94.
PMID: 23338987
DOI: 10.1007/s40279-013-0017-1.
The use of nonsteroidal anti-inflammatory drugs for exercise-induced muscle damage: implications for skeletal muscle development.
Schoenfeld B
Sports Med. 2012; 42(12):1017-28.
PMID: 23013520
DOI: 10.1007/BF03262309.