» Articles » PMID: 17675385

Plasmids PMOL28 and PMOL30 of Cupriavidus Metallidurans Are Specialized in the Maximal Viable Response to Heavy Metals

Overview
Journal J Bacteriol
Specialty Microbiology
Date 2007 Aug 7
PMID 17675385
Citations 77
Authors
Affiliations
Soon will be listed here.
Abstract

We fully annotated two large plasmids, pMOL28 (164 open reading frames [ORFs]; 171,459 bp) and pMOL30 (247 ORFs; 233,720 bp), in the genome of Cupriavidus metallidurans CH34. pMOL28 contains a backbone of maintenance and transfer genes resembling those found in plasmid pSym of C. taiwanensis and plasmid pHG1 of C. eutrophus, suggesting that they belong to a new class of plasmids. Genes involved in resistance to the heavy metals Co(II), Cr(VI), Hg(II), and Ni(II) are concentrated in a 34-kb region on pMOL28, and genes involved in resistance to Ag(I), Cd(II), Co(II), Cu(II), Hg(II), Pb(II), and Zn(II) occur in a 132-kb region on pMOL30. We identified three putative genomic islands containing metal resistance operons flanked by mobile genetic elements, one on pMOL28 and two on pMOL30. Transcriptomic analysis using quantitative PCR and microarrays revealed metal-mediated up-regulation of 83 genes on pMOL28 and 143 genes on pMOL30 that coded for all known heavy metal resistance proteins, some new heavy metal resistance proteins (czcJ, mmrQ, and pbrU), membrane proteins, truncated transposases, conjugative transfer proteins, and many unknown proteins. Five genes on each plasmid were down-regulated; for one of them, chrI localized on pMOL28, the down-regulation occurred in the presence of five cations. We observed multiple cross-responses (induction of specific metal resistance by other metals), suggesting that the cellular defense of C. metallidurans against heavy metal stress involves various regulons and probably has multiple stages, including a more general response and a more metal-specific response.

Citing Articles

Time-resolved proteomic profiling of Cupriavidus metallidurans CH34 in the copper-induced viable-but-nonculturable state.

Patocka T, Gupta S, Mastroleo F, Leys N, Matroule J, Van Houdt R Metallomics. 2025; 17(3).

PMID: 39963715 PMC: 11886801. DOI: 10.1093/mtomcs/mfaf007.


New complete genome insights into Enterobacter roggenkampii FACU2: a potential player in cadmium bio-removal.

Halema A, Abdel-Maksoud M, Ali M, Malik A, Kiani B, Henawy A World J Microbiol Biotechnol. 2024; 41(1):2.

PMID: 39690298 DOI: 10.1007/s11274-024-04138-0.


Permanent draft genome sequences of cadmium-resistant isolates of from soils within the Tar Creek Superfund site.

Winn J, Wedlock E, McHugh E, Monismith Jr D, Campbell J, Campbell A Microbiol Resour Announc. 2024; 14(1):e0081824.

PMID: 39589146 PMC: 11737155. DOI: 10.1128/mra.00818-24.


Linking the transcriptome to physiology: response of the proteome of Cupriavidus metallidurans to changing metal availability.

Galea D, Herzberg M, Dobritzsch D, Fuszard M, Nies D Metallomics. 2024; 16(12).

PMID: 39562290 PMC: 11647595. DOI: 10.1093/mtomcs/mfae058.


A flow equilibrium of zinc in cells of .

Nies D, Schleuder G, Galea D, Herzberg M J Bacteriol. 2024; 206(5):e0008024.

PMID: 38661374 PMC: 11112998. DOI: 10.1128/jb.00080-24.


References
1.
Tibazarwa C, Wuertz S, Mergeay M, Wyns L, van der Lelie D . Regulation of the cnr cobalt and nickel resistance determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. J Bacteriol. 2000; 182(5):1399-409. PMC: 94429. DOI: 10.1128/JB.182.5.1399-1409.2000. View

2.
Nies D, Rehbein G, Hoffmann T, Baumann C, Grosse C . Paralogs of genes encoding metal resistance proteins in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol. 2006; 11(1-2):82-93. DOI: 10.1159/000092820. View

3.
Goris J, de Vos P, Coenye T, Hoste B, Janssens D, Brim H . Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. Int J Syst Evol Microbiol. 2001; 51(Pt 5):1773-1782. DOI: 10.1099/00207713-51-5-1773. View

4.
Sakai D, Komano T . Genes required for plasmid R64 thin-pilus biogenesis: identification and localization of products of the pilK, pilM, pilO, pilP, pilR, and pilT genes. J Bacteriol. 2001; 184(2):444-51. PMC: 139557. DOI: 10.1128/JB.184.2.444-451.2002. View

5.
Nies D . Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev. 2003; 27(2-3):313-39. DOI: 10.1016/S0168-6445(03)00048-2. View