Shiromani P
Sleep Adv. 2024; 5(1):zpae055.
PMID: 39211349
PMC: 11359167.
DOI: 10.1093/sleepadvances/zpae055.
Mauries S, Bertrand L, Frija-Masson J, Benzaquen H, Kalamarides S, Sauvage K
Sleep Med X. 2023; 6:100085.
PMID: 37736106
PMC: 10509708.
DOI: 10.1016/j.sleepx.2023.100085.
Barbato G
Brain Sci. 2023; 13(3).
PMID: 36979188
PMC: 10046235.
DOI: 10.3390/brainsci13030378.
Vijayraghavan S, Everling S
Front Neural Circuits. 2021; 15:648624.
PMID: 33790746
PMC: 8005543.
DOI: 10.3389/fncir.2021.648624.
Parkar A, Fedrigon D, Alam F, Vanini G, Mashour G, Pal D
Front Neurosci. 2020; 14:567849.
PMID: 33328847
PMC: 7714754.
DOI: 10.3389/fnins.2020.567849.
Molecular Mechanisms of REM Sleep.
Yamada R, Ueda H
Front Neurosci. 2020; 13:1402.
PMID: 32009883
PMC: 6972504.
DOI: 10.3389/fnins.2019.01402.
Low acetylcholine during early sleep is important for motor memory consolidation.
Inayat S, Qandeel , Nazariahangarkolaee M, Singh S, McNaughton B, Whishaw I
Sleep. 2019; 43(6).
PMID: 31825510
PMC: 7294415.
DOI: 10.1093/sleep/zsz297.
Control of sleep and wakefulness.
Brown R, Basheer R, McKenna J, Strecker R, McCarley R
Physiol Rev. 2012; 92(3):1087-187.
PMID: 22811426
PMC: 3621793.
DOI: 10.1152/physrev.00032.2011.
Water chreodes and the mechanisms of ligand diffusion, general anesthesia, and sleep.
Kier L
Biochem Res Int. 2011; 2011:396560.
PMID: 21804942
PMC: 3144665.
DOI: 10.1155/2011/396560.
Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during rapid eye movement sleep.
Vanini G, Wathen B, Lydic R, Baghdoyan H
J Neurosci. 2011; 31(7):2649-56.
PMID: 21325533
PMC: 3073841.
DOI: 10.1523/JNEUROSCI.5674-10.2011.
Pontine reticular formation (PnO) administration of hypocretin-1 increases PnO GABA levels and wakefulness.
Watson C, Soto-Calderon H, Lydic R, Baghdoyan H
Sleep. 2008; 31(4):453-64.
PMID: 18457232
PMC: 2279760.
DOI: 10.1093/sleep/31.4.453.
Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation.
Gais S, Born J
Proc Natl Acad Sci U S A. 2004; 101(7):2140-4.
PMID: 14766981
PMC: 357065.
DOI: 10.1073/pnas.0305404101.
A brief history of hypocretin/orexin and narcolepsy.
Siegel J, MOORE R, Thannickal T, Nienhuis R
Neuropsychopharmacology. 2001; 25(5 Suppl):S14-20.
PMID: 11682268
PMC: 8788648.
DOI: 10.1016/S0893-133X(01)00317-7.
Sleep in depression: the influence of age, gender and diagnostic subtype on baseline sleep and the cholinergic REM induction test with RS 86.
Riemann D, Hohagen F, Bahro M, Berger M
Eur Arch Psychiatry Clin Neurosci. 1994; 243(5):279-90.
PMID: 8172943
DOI: 10.1007/BF02191586.
Inhibition of REM sleep by ipsapirone, a 5HT1A agonist, in normal volunteers.
Gillin J, Jernajczyk W, Golshan S, Lardon M, Stahl S
Psychopharmacology (Berl). 1994; 116(4):433-6.
PMID: 7701045
DOI: 10.1007/BF02247474.
REM sleep suppression induced by selective monoamine oxidase inhibitors.
Cohen R, Pickar D, Garnett D, Lipper S, Gillin J, Murphy D
Psychopharmacology (Berl). 1982; 78(2):137-40.
PMID: 6817370
DOI: 10.1007/BF00432251.
Imipramine and REM sleep: cholinergic mediation in animals.
Hill S, Reyes R, Kupfer D
Psychopharmacology (Berl). 1980; 69(1):5-9.
PMID: 6771826
DOI: 10.1007/BF00426514.
Acetylcholine and affective disorder.
Leong S, Brown W
J Neural Transm. 1987; 70(3-4):295-312.
PMID: 3316493
DOI: 10.1007/BF01253604.
Intravenous physostigmine treatment of Alzheimer's disease evaluated by psychometric testing, regional cerebral blood flow (rCBF) measurement, and EEG.
Gustafson L, Edvinsson L, Dahlgren N, Hagberg B, Risberg J, Rosen I
Psychopharmacology (Berl). 1987; 93(1):31-5.
PMID: 3114812
DOI: 10.1007/BF02439583.
EEG effects of physostigmine and choline chloride in humans.
Pfefferbaum A, Davis K, Coulter C, Mohs R, Tinklenberg J, KOPELL B
Psychopharmacology (Berl). 1979; 62(3):225-33.
PMID: 111288
DOI: 10.1007/BF00431952.