Alexander A, Elshahawi S
Chembiochem. 2023; 24(17):e202300372.
PMID: 37338668
PMC: 10496146.
DOI: 10.1002/cbic.202300372.
Joiner C, Levine Z, Aonbangkhen C, Woo C, Walker S
J Am Chem Soc. 2019; 141(33):12974-12978.
PMID: 31373491
PMC: 6849375.
DOI: 10.1021/jacs.9b06061.
Hu C, Worth M, Li H, Jiang J
Chembiochem. 2018; 20(3):312-318.
PMID: 30199580
PMC: 6433133.
DOI: 10.1002/cbic.201800481.
Garner A
Chem Commun (Camb). 2018; 54(50):6531-6539.
PMID: 29781014
PMC: 6008226.
DOI: 10.1039/c8cc02332h.
Levine Z, Fan C, Melicher M, Orman M, Benjamin T, Walker S
J Am Chem Soc. 2018; 140(10):3510-3513.
PMID: 29485866
PMC: 5937710.
DOI: 10.1021/jacs.7b13546.
Enhanced transfer of a photocross-linking N-acetylglucosamine (GlcNAc) analog by an O-GlcNAc transferase mutant with converted substrate specificity.
Rodriguez A, Yu S, Li B, Zegzouti H, Kohler J
J Biol Chem. 2015; 290(37):22638-48.
PMID: 26240142
PMC: 4566237.
DOI: 10.1074/jbc.M115.667006.
The active site of O-GlcNAc transferase imposes constraints on substrate sequence.
Pathak S, Alonso J, Schimpl M, Rafie K, Blair D, Borodkin V
Nat Struct Mol Biol. 2015; 22(9):744-750.
PMID: 26237509
PMC: 4979681.
DOI: 10.1038/nsmb.3063.
Chemical tools to explore nutrient-driven O-GlcNAc cycling.
Kim E, Bond M, Love D, Hanover J
Crit Rev Biochem Mol Biol. 2014; 49(4):327-42.
PMID: 25039763
PMC: 6396312.
DOI: 10.3109/10409238.2014.931338.
Versatile O-GlcNAc transferase assay for high-throughput identification of enzyme variants, substrates, and inhibitors.
Kim E, Abramowitz L, Bond M, Love D, Kang D, Leucke H
Bioconjug Chem. 2014; 25(6):1025-30.
PMID: 24866374
PMC: 4215860.
DOI: 10.1021/bc5001774.
Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners.
Yu S, Boyce M, Wands A, Bond M, Bertozzi C, Kohler J
Proc Natl Acad Sci U S A. 2012; 109(13):4834-9.
PMID: 22411826
PMC: 3323966.
DOI: 10.1073/pnas.1114356109.
Insights into O-linked N-acetylglucosamine ([0-9]O-GlcNAc) processing and dynamics through kinetic analysis of O-GlcNAc transferase and O-GlcNAcase activity on protein substrates.
Shen D, Gloster T, Yuzwa S, Vocadlo D
J Biol Chem. 2012; 287(19):15395-408.
PMID: 22311971
PMC: 3346082.
DOI: 10.1074/jbc.M111.310664.
Chemical arsenal for the study of O-GlcNAc.
Kim E
Molecules. 2011; 16(3):1987-2022.
PMID: 21358590
PMC: 6259741.
DOI: 10.3390/molecules16031987.
Mechanism, Structure, and Inhibition of O-GlcNAc Processing Enzymes.
Gloster T, Vocadlo D
Curr Signal Transduct Ther. 2010; 5(1):74-91.
PMID: 20396401
PMC: 2854817.
DOI: 10.2174/157436210790226537.
Broad spectrum O-linked protein glycosylation in the human pathogen Neisseria gonorrhoeae.
Vik A, Aas F, Anonsen J, Bilsborough S, Schneider A, Egge-Jacobsen W
Proc Natl Acad Sci U S A. 2009; 106(11):4447-52.
PMID: 19251655
PMC: 2648892.
DOI: 10.1073/pnas.0809504106.
Enzymatic glycosylation of peptide arrays on gold surfaces.
Laurent N, Voglmeir J, Wright A, Blackburn J, Pham N, Wong S
Chembiochem. 2008; 9(6):883-7.
PMID: 18330850
PMC: 2635019.
DOI: 10.1002/cbic.200700692.