» Articles » PMID: 17481612

ER Chaperones in Mammalian Development and Human Diseases

Overview
Journal FEBS Lett
Specialty Biochemistry
Date 2007 May 8
PMID 17481612
Citations 331
Authors
Affiliations
Soon will be listed here.
Abstract

The field of endoplasmic reticulum (ER) stress in mammalian cells has expanded rapidly during the past decade, contributing to understanding of the molecular pathways that allow cells to adapt to perturbations in ER homeostasis. One major mechanism is mediated by molecular ER chaperones which are critical not only for quality control of proteins processed in the ER, but also for regulation of ER signaling in response to ER stress. Here, we summarized the properties and functions of GRP78/BiP, GRP94/gp96, GRP170/ORP150, GRP58/ERp57, PDI, ERp72, calnexin, calreticulin, EDEM, Herp and co-chaperones SIL1 and P58(IPK) and their role in development and diseases. Many of the new insights are derived from recently constructed mouse models where the genes encoding the chaperones are genetically altered, providing invaluable tools for examining the physiological involvement of the ER chaperones in vivo.

Citing Articles

Cancer-Targeting Peptides Functionalized With Polyarginine Enables GRP78-Dependent Cell Uptake and siRNA Delivery Within the DU145 Prostate Cancer Cells.

Hilan G, Daniel G, Collak F, Sabatino D, Willmore W J Pept Sci. 2025; 31(3):e70007.

PMID: 39967318 PMC: 11836551. DOI: 10.1002/psc.70007.


Recent advances in vascular thiol isomerases: insights into structures, functions in thrombosis and antithrombotic inhibitor development.

Jiang L, Yuan C, Flaumenhaft R, Huang M Thromb J. 2025; 23(1):16.

PMID: 39962537 PMC: 11834194. DOI: 10.1186/s12959-025-00699-8.


Endoplasmic reticulum stress and expression of nitric oxide synthases in heart failure with preserved and with reduced ejection fraction - pilot study.

Momot K, Wojciechowska M, Krauz K, Czarzasta K, Puchalska L, Zarebinski M Cardiol J. 2024; 31(6):885-894.

PMID: 39360989 PMC: 11706269. DOI: 10.5603/cj.97962.


Transcriptomic Analysis of Cardiac Tissues in a Rodent Model of Coronary Microembolization.

Jiang Z, Lu H, Gao B, Huang J, Ding Y J Inflamm Res. 2024; 17:6645-6659.

PMID: 39345897 PMC: 11437660. DOI: 10.2147/JIR.S469297.


Glucose-Regulated Protein 78, via Releasing β-Catenin from Adherens Junctions, Facilitates Its Interaction with STAT3 in Mediating Retinal Neovascularization.

Kumar R, Rao G Am J Pathol. 2024; 194(12):2356-2381.

PMID: 39222910 PMC: 11587869. DOI: 10.1016/j.ajpath.2024.08.005.


References
1.
Eggleton P, Llewellyn D . Pathophysiological roles of calreticulin in autoimmune disease. Scand J Immunol. 1999; 49(5):466-73. DOI: 10.1046/j.1365-3083.1999.00542.x. View

2.
Molinari M, Eriksson K, Calanca V, Galli C, Cresswell P, Michalak M . Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Mol Cell. 2004; 13(1):125-35. DOI: 10.1016/s1097-2765(03)00494-5. View

3.
den Heijer M, Koster T, Blom H, Bos G, Briet E, Reitsma P . Hyperhomocysteinemia as a risk factor for deep-vein thrombosis. N Engl J Med. 1996; 334(12):759-62. DOI: 10.1056/NEJM199603213341203. View

4.
Hong M, Luo S, Baumeister P, Huang J, Gogia R, Li M . Underglycosylation of ATF6 as a novel sensing mechanism for activation of the unfolded protein response. J Biol Chem. 2003; 279(12):11354-63. DOI: 10.1074/jbc.M309804200. View

5.
Koumenis C . ER stress, hypoxia tolerance and tumor progression. Curr Mol Med. 2006; 6(1):55-69. DOI: 10.2174/156652406775574604. View