» Articles » PMID: 17442830

Suppressed Neuronal Activity and Concurrent Arteriolar Vasoconstriction May Explain Negative Blood Oxygenation Level-dependent Signal

Overview
Journal J Neurosci
Specialty Neurology
Date 2007 Apr 20
PMID 17442830
Citations 202
Authors
Affiliations
Soon will be listed here.
Abstract

Synaptic transmission initiates a cascade of signal transduction events that couple neuronal activity to local changes in blood flow and oxygenation. Although a number of vasoactive molecules and specific cell types have been implicated, the transformation of stimulus-induced activation of neuronal circuits to hemodynamic changes is still unclear. We use somatosensory stimulation and a suite of in vivo imaging tools to study neurovascular coupling in rat primary somatosensory cortex. Our stimulus evoked a central region of net neuronal depolarization surrounded by net hyperpolarization. Hemodynamic measurements revealed that predominant depolarization corresponded to an increase in oxygenation, whereas predominant hyperpolarization corresponded to a decrease in oxygenation. On the microscopic level of single surface arterioles, the response was composed of a combination of dilatory and constrictive phases. Critically, the relative strength of vasoconstriction covaried with the relative strength of oxygenation decrease and neuronal hyperpolarization. These results suggest that a neuronal inhibition and concurrent arteriolar vasoconstriction correspond to a decrease in blood oxygenation, which would be consistent with a negative blood oxygenation level-dependent functional magnetic resonance imaging signal.

Citing Articles

Investigating the Consistency of Negative BOLD Responses to Combinations of Visual, Auditory, and Somatosensory Stimuli and Their Modulation by the Level of Task Demand.

Nelson W, Mayhew S Hum Brain Mapp. 2025; 46(4):e70177.

PMID: 40047348 PMC: 11883661. DOI: 10.1002/hbm.70177.


Neural correlates of personal space regulation in psychosis: role of the inferior parietal cortex.

Vinke L, Avanaki M, Jeffrey C, Harikumar A, Mow J, Tootell R Mol Psychiatry. 2025; .

PMID: 39900675 DOI: 10.1038/s41380-025-02906-4.


Modeling of Blood Flow Dynamics in Rat Somatosensory Cortex.

Battini S, Cantarutti N, Kotsalos C, Roussel Y, Cattabiani A, Arnaudon A Biomedicines. 2025; 13(1).

PMID: 39857656 PMC: 11761867. DOI: 10.3390/biomedicines13010072.


Revealing excitation-inhibition imbalance in Alzheimer's disease using multiscale neural model inversion of resting-state functional MRI.

Li G, Hsu L, Wu Y, Bozoki A, Shih Y, Yap P Commun Med (Lond). 2025; 5(1):17.

PMID: 39814858 PMC: 11735810. DOI: 10.1038/s43856-025-00736-7.


Transcranial Magnetic Stimulation Inter-Pulse Interval Does Not Influence Corticospinal Excitability to the Biceps Brachii During Submaximal Isometric Elbow Flexion.

Imeson D, Gerditschke L, Brown L, Forman D Eur J Neurosci. 2025; 61(1):e16671.

PMID: 39810291 PMC: 11733025. DOI: 10.1111/ejn.16671.


References
1.
Webber R, Stanley G . Nonlinear encoding of tactile patterns in the barrel cortex. J Neurophysiol. 2003; 91(5):2010-22. DOI: 10.1152/jn.00906.2003. View

2.
Filosa J, Bonev A, Straub S, Meredith A, Wilkerson M, Aldrich R . Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci. 2006; 9(11):1397-1403. DOI: 10.1038/nn1779. View

3.
Faraci F, Breese K . Nitric oxide mediates vasodilatation in response to activation of N-methyl-D-aspartate receptors in brain. Circ Res. 1993; 72(2):476-80. DOI: 10.1161/01.res.72.2.476. View

4.
Lindauer U, Villringer A, Dirnagl U . Characterization of CBF response to somatosensory stimulation: model and influence of anesthetics. Am J Physiol. 1993; 264(4 Pt 2):H1223-8. DOI: 10.1152/ajpheart.1993.264.4.H1223. View

5.
Moore C, Nelson S . Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J Neurophysiol. 1998; 80(6):2882-92. DOI: 10.1152/jn.1998.80.6.2882. View