» Articles » PMID: 17194720

Mass Spectrometry-based Detection of Transfer RNAs by Their Signature Endonuclease Digestion Products

Overview
Journal RNA
Specialty Molecular Biology
Date 2006 Dec 30
PMID 17194720
Citations 39
Authors
Affiliations
Soon will be listed here.
Abstract

The separation of biologically active, pure, and specific tRNAs is difficult due to the overall similarity in secondary and tertiary structures of different tRNAs. Because prior methods do not facilitate high-resolution separations of the extremely complex mixture represented by a cellular tRNA population, global studies of tRNA identity and/or abundance are difficult. We have discovered that the enzymatic digestion of an individual tRNA by a ribonuclease (e.g., RNase T1) will generate digestion products unique to that particular tRNA, and we show that a comparison of an organism's complete complement of tRNA RNase digestion products yields a set of unique or "signature" digestion product(s) that ultimately enable the detection of individual tRNAs from a total tRNA pool. Detection is facilitated by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and proof-of-principle is demonstrated on the whole tRNA pool from Escherichia coli. This method will enable the individual identification of tRNA isoacceptors without requiring specific affinity purification or extensive chromatographic and/or electrophoretic purification. Further, experimental identifications of tRNAs or other RNAs will now be possible using this signature digestion product approach in a manner similar to peptide mass fingerprinting used in proteomics, allowing RNomic studies of RNA at the post-transcriptional level.

Citing Articles

Stress-induced modification of tRNA generates 5-methylcytidine in the variable loop.

Valesyan S, Jora M, Addepalli B, Limbach P Proc Natl Acad Sci U S A. 2024; 121(46):e2317857121.

PMID: 39495928 PMC: 11572931. DOI: 10.1073/pnas.2317857121.


Spacer Fidelity Assessments of Guide RNA by Top-Down Mass Spectrometry.

Macias L, Garcia S, Back K, Wu Y, Johnson G, Kathiresan S ACS Cent Sci. 2023; 9(7):1437-1452.

PMID: 37521788 PMC: 10375574. DOI: 10.1021/acscentsci.3c00289.


Middle-out sequence confirmation of CRISPR/Cas9 single guide RNA (sgRNA) using DNA primers and ribonuclease T1 digestion.

Chin S, Goyon A, Zhang K, Kurita K Anal Bioanal Chem. 2023; 415(14):2809-2818.

PMID: 37093234 DOI: 10.1007/s00216-023-04693-9.


Analysis of RNA Sequences and Modifications Using NASE.

Wein S Methods Mol Biol. 2023; 2624:225-239.

PMID: 36723819 DOI: 10.1007/978-1-0716-2962-8_15.


Rapid Determination of RNA Modifications in Consensus Motifs by Nuclease Protection with Ion-Tagged Oligonucleotide Probes and Matrix-Assisted Laser Desorption Ionization Mass Spectrometry.

Melzer M, Sweedler J, Clark K Genes (Basel). 2022; 13(6).

PMID: 35741770 PMC: 9222981. DOI: 10.3390/genes13061008.


References
1.
Kirpekar F, Douthwaite S, Roepstorff P . Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry. RNA. 2000; 6(2):296-306. PMC: 1369914. DOI: 10.1017/s1355838200992148. View

2.
Kowalak J, BRUENGER E, Crain P, McCloskey J . Identities and phylogenetic comparisons of posttranscriptional modifications in 16 S ribosomal RNA from Haloferax volcanii. J Biol Chem. 2000; 275(32):24484-9. DOI: 10.1074/jbc.M002153200. View

3.
Cayama E, Yepez A, Rotondo F, Bandeira E, Ferreras A . New chromatographic and biochemical strategies for quick preparative isolation of tRNA. Nucleic Acids Res. 2000; 28(12):E64. PMC: 102749. DOI: 10.1093/nar/28.12.e64. View

4.
Holmes W, Hurd R, Reid B, Rimerman R, Hatfield G . Separation of transfer ribonucleic acid by sepharose chromatography using reverse salt gradients. Proc Natl Acad Sci U S A. 1975; 72(3):1068-71. PMC: 432467. DOI: 10.1073/pnas.72.3.1068. View

5.
Conrads T, Anderson G, Veenstra T, Pasa-Tolic L, Smith R . Utility of accurate mass tags for proteome-wide protein identification. Anal Chem. 2000; 72(14):3349-54. DOI: 10.1021/ac0002386. View