» Articles » PMID: 17190827

Structural Basis for Intramembrane Proteolysis by Rhomboid Serine Proteases

Overview
Specialty Science
Date 2006 Dec 28
PMID 17190827
Citations 86
Authors
Affiliations
Soon will be listed here.
Abstract

Intramembrane proteases catalyze peptide bond cleavage of integral membrane protein substrates. This activity is crucial for many biological and pathological processes. Rhomboids are evolutionarily widespread intramembrane serine proteases. Here, we present the 2.3-A-resolution crystal structure of a rhomboid from Escherichia coli. The enzyme has six transmembrane helices, five of which surround a short TM4, which starts deep within the membrane at the catalytic serine residue. Thus, the catalytic serine is in an externally exposed cavity, which provides a hydrophilic environment for proteolysis. Our results reveal a mechanism to enable water-dependent catalysis at the depth of the hydrophobic milieu of the membrane and suggest how substrates gain access to the sequestered rhomboid active site.

Citing Articles

Cryo-EM reveals that iRhom2 restrains ADAM17 protease activity to control the release of growth factor and inflammatory signals.

Lu F, Zhao H, Dai Y, Wang Y, Lee C, Freeman M Mol Cell. 2024; 84(11):2152-2165.e5.

PMID: 38781971 PMC: 11248996. DOI: 10.1016/j.molcel.2024.04.025.


The derlin Dfm1 couples retrotranslocation of a folded protein domain to its proteasomal degradation.

Vitali D, Fonseca D, Carvalho P J Cell Biol. 2024; 223(5).

PMID: 38448163 PMC: 11066878. DOI: 10.1083/jcb.202308074.


Effect of Environmental Factors on the Catalytic Activity of Intramembrane Serine Protease.

Asadi M, Oanca G, Warshel A J Am Chem Soc. 2022; 144(3):1251-1257.

PMID: 35023734 PMC: 10349665. DOI: 10.1021/jacs.1c10494.


Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg.

Dyakin V, Wisniewski T, Lajtha A Symmetry (Basel). 2021; 13(3).

PMID: 34350031 PMC: 8330555. DOI: 10.3390/sym13030455.


Phosphatidylglyerol Lipid Binding at the Active Site of an Intramembrane Protease.

Bondar A J Membr Biol. 2020; 253(6):563-576.

PMID: 33210155 PMC: 7688093. DOI: 10.1007/s00232-020-00152-z.


References
1.
Johnson A, Gautham N, Pattabhi V . Crystal structure at 1.63 A resolution of the native form of porcine beta-trypsin: revealing an acetate ion binding site and functional water network. Biochim Biophys Acta. 1999; 1435(1-2):7-21. DOI: 10.1016/s0167-4838(99)00202-2. View

2.
Brunger A, Adams P, Clore G, DeLano W, Gros P, Grosse-Kunstleve R . Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998; 54(Pt 5):905-21. DOI: 10.1107/s0907444998003254. View

3.
Datsenko K, Wanner B . One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000; 97(12):6640-5. PMC: 18686. DOI: 10.1073/pnas.120163297. View

4.
Terwilliger T . Maximum-likelihood density modification. Acta Crystallogr D Biol Crystallogr. 2000; 56(Pt 8):965-72. PMC: 2792768. DOI: 10.1107/s0907444900005072. View

5.
Ye J, Rawson R, Komuro R, Chen X, Dave U, Prywes R . ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 2001; 6(6):1355-64. DOI: 10.1016/s1097-2765(00)00133-7. View