» Articles » PMID: 17160639

Patterns of DNA Variation Among Three Centromere Satellite Families in Arabidopsis Halleri and A. Lyrata

Overview
Journal J Mol Evol
Specialty Biochemistry
Date 2006 Dec 13
PMID 17160639
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

We describe patterns of DNA variation among the three centromeric satellite families in Arabidopsis halleri and lyrata. The newly studied subspecies (A. halleri ssp. halleri and A. lyrata ssp. lyrata and petraea), like the previously studied A. halleri ssp. gemmifera and A. lyrata ssp. kawasakiana, have three different centromeric satellite families, the older pAa family (also present in A. arenosa) and two families, pAge1 and pAge2, that probably evolved more recently. Sequence variability is high in all three satellite families, and the pAa sequences do not cluster by their species of origin. Diversity in the pAge2 family is complex, and different from variation among copies of the other two families, showing clear evidence for exchange events among family members, especially in A. halleri ssp. halleri. In A. lyrata ssp. lyrata there is some evidence for recent rapid spread of pAge2 variants, suggesting selection favoring these sequences.

Citing Articles

Comparative Analysis of Satellite DNA in the Species Complex.

Jagannathan M, Warsinger-Pepe N, Watase G, Yamashita Y G3 (Bethesda). 2016; 7(2):693-704.

PMID: 28007840 PMC: 5295612. DOI: 10.1534/g3.116.035352.


Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution.

Melters D, Bradnam K, Young H, Telis N, May M, Ruby J Genome Biol. 2013; 14(1):R10.

PMID: 23363705 PMC: 4053949. DOI: 10.1186/gb-2013-14-1-r10.


A nomadic subtelomeric disease resistance gene cluster in common bean.

David P, Chen N, Pedrosa-Harand A, Thareau V, Sevignac M, Cannon S Plant Physiol. 2009; 151(3):1048-65.

PMID: 19776165 PMC: 2773105. DOI: 10.1104/pp.109.142109.


Bursts of retrotransposition reproduced in Arabidopsis.

Tsukahara S, Kobayashi A, Kawabe A, Mathieu O, Miura A, Kakutani T Nature. 2009; 461(7262):423-6.

PMID: 19734880 DOI: 10.1038/nature08351.


Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres.

Liu Z, Yue W, Li D, Wang R, Kong X, Lu K Chromosoma. 2008; 117(5):445-56.

PMID: 18496705 DOI: 10.1007/s00412-008-0161-9.

References
1.
Dooner H . Extensive interallelic polymorphisms drive meiotic recombination into a crossover pathway. Plant Cell. 2002; 14(5):1173-83. PMC: 150615. DOI: 10.1105/tpc.001271. View

2.
Stephan W . Tandem-repetitive noncoding DNA: forms and forces. Mol Biol Evol. 1989; 6(2):198-212. DOI: 10.1093/oxfordjournals.molbev.a040542. View

3.
Lo A, Magliano D, Sibson M, Kalitsis P, Craig J, Choo K . A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res. 2001; 11(3):448-57. PMC: 311059. DOI: 10.1101/gr.gr-1676r. View

4.
Ramos-Onsins S, Stranger B, Mitchell-Olds T, Aguade M . Multilocus analysis of variation and speciation in the closely related species Arabidopsis halleri and A. lyrata. Genetics. 2004; 166(1):373-88. PMC: 1470697. DOI: 10.1534/genetics.166.1.373. View

5.
Schindelhauer D, Schwarz T . Evidence for a fast, intrachromosomal conversion mechanism from mapping of nucleotide variants within a homogeneous alpha-satellite DNA array. Genome Res. 2002; 12(12):1815-26. PMC: 187568. DOI: 10.1101/gr.451502. View