» Articles » PMID: 11230169

A Novel Chromatin Immunoprecipitation and Array (CIA) Analysis Identifies a 460-kb CENP-A-binding Neocentromere DNA

Overview
Journal Genome Res
Specialty Genetics
Date 2001 Mar 7
PMID 11230169
Citations 55
Authors
Affiliations
Soon will be listed here.
Abstract

Centromere protein A (CENP-A) is an essential histone H3-related protein that constitutes the specialized chromatin of an active centromere. It has been suggested that this protein plays a key role in the epigenetic marking and transformation of noncentromeric genomic DNA into functional neocentromeres. Neocentromeres have been identified on more than two-thirds of the human chromosomes, presumably involving different noncentromeric DNA sequences, but it is unclear whether some generalized sequence properties account for these neocentromeric sites. Using a novel method combining chromatin immunoprecipitation and genomic array hybridization, we have identified a 460-kb CENP-A-binding DNA domain of a neocentromere derived from the 20p12 region of an invdup (20p) human marker chromosome. Detailed sequence analysis indicates that this domain contains no centromeric alpha-satellite, classical satellites, or other known pericentric repetitive sequence motifs. Putative gene loci are detected, suggesting that their presence does not preclude neocentromere formation. The sequence is not significantly different from surrounding non-CENP-A-binding DNA in terms of the prevalence of various interspersed repeats and binding sites for DNA-interacting proteins (Topoisomerase II and High-Mobility-Group protein I). Notable variations include a higher AT content similar to that seen in human alpha-satellite DNA and a reduced prevalence of long terminal repeats (LTRs), short interspersed repeats (SINEs), and Alus. The significance of these features in neocentromerization is discussed.

Citing Articles

Summary of ChIP-Seq Methods and Description of an Optimized ChIP-Seq Protocol.

Fadri M, Lee J, Keung A Methods Mol Biol. 2024; 2842:419-447.

PMID: 39012609 DOI: 10.1007/978-1-0716-4051-7_22.


Centromere repositioning and shifts in wheat evolution.

Zhao J, Xie Y, Kong C, Lu Z, Jia H, Ma Z Plant Commun. 2023; 4(4):100556.

PMID: 36739481 PMC: 10398676. DOI: 10.1016/j.xplc.2023.100556.


Case Report: Prenatal Identification of a Mosaic Neocentric Marker Resulting in 13q31.1→qter Tetrasomy in a Mildly Affected Girl.

Dharmadhikari A, Pereira E, Andrews C, Macera M, Harkavy N, Wapner R Front Genet. 2022; 13:906077.

PMID: 35928455 PMC: 9343796. DOI: 10.3389/fgene.2022.906077.


Epigenetic control of centromere: what can we learn from neocentromere?.

Kim T Genes Genomics. 2021; 44(3):317-325.

PMID: 34843088 DOI: 10.1007/s13258-021-01193-x.


Molecular Complexes at Euchromatin, Heterochromatin and Centromeric Chromatin.

Morrison O, Thakur J Int J Mol Sci. 2021; 22(13).

PMID: 34203193 PMC: 8268097. DOI: 10.3390/ijms22136922.


References
1.
Luger K, Mader A, Richmond R, Sargent D, Richmond T . Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997; 389(6648):251-60. DOI: 10.1038/38444. View

2.
Koch J . Neocentromeres and alpha satellite: a proposed structural code for functional human centromere DNA. Hum Mol Genet. 1999; 9(2):149-54. DOI: 10.1093/hmg/9.2.149. View

3.
Telenius H, Carter N, Bebb C, Nordenskjold M, Ponder B, Tunnacliffe A . Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics. 1992; 13(3):718-25. DOI: 10.1016/0888-7543(92)90147-k. View

4.
Howman E, Fowler K, Newson A, Redward S, Macdonald A, Kalitsis P . Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc Natl Acad Sci U S A. 2000; 97(3):1148-53. PMC: 15551. DOI: 10.1073/pnas.97.3.1148. View

5.
Choo K . Centromerization. Trends Cell Biol. 2000; 10(5):182-8. DOI: 10.1016/s0962-8924(00)01739-6. View