» Articles » PMID: 17157190

Antioxidants in Cystic Fibrosis. Conclusions from the CF Antioxidant Workshop, Bethesda, Maryland, November 11-12, 2003

Overview
Date 2006 Dec 13
PMID 17157190
Citations 44
Authors
Affiliations
Soon will be listed here.
Abstract

Although great strides are being made in the care of individuals with cystic fibrosis (CF), this condition remains the most common fatal hereditary disease in North America. Numerous links exist between progression of CF lung disease and oxidative stress. The defect in CF is the loss of function of the transmembrane conductance regulator (CFTR) protein; recent evidence that CFTR expression and function are modulated by oxidative stress suggests that the loss may result in a poor adaptive response to oxidants. Pancreatic insufficiency in CF also increases susceptibility to deficiencies in lipophilic antioxidants. Finally the airway infection and inflammatory processes in the CF lung are potential sources of oxidants that can affect normal airway physiology and contribute to the mechanisms causing characteristic changes associated with bronchiectasis and loss of lung function. These multiple abnormalities in the oxidant/antioxidant balance raise several possibilities for therapeutic interventions that must be carefully assessed.

Citing Articles

Total sputum nitrate/nitrite is associated with exacerbations and colonisation in bronchiectasis.

Zhou Y, He X, Tang J, Zhang D, Liu Y, Xue Y ERJ Open Res. 2024; 10(4).

PMID: 39040581 PMC: 11261385. DOI: 10.1183/23120541.01045-2023.


Selenium in Infants and Preschool Children Nutrition: A Literature Review.

Dobrzynska M, Kaczmarek K, Przyslawski J, Drzymala-Czyz S Nutrients. 2023; 15(21).

PMID: 37960322 PMC: 10648445. DOI: 10.3390/nu15214668.


Cellular Compartmentalization, Glutathione Transport and Its Relevance in Some Pathologies.

Vazquez-Meza H, Vilchis-Landeros M, Vazquez-Carrada M, Uribe-Ramirez D, Matuz-Mares D Antioxidants (Basel). 2023; 12(4).

PMID: 37107209 PMC: 10135322. DOI: 10.3390/antiox12040834.


Tocotrienol-Rich Fractions Offer Potential to Suppress Pulmonary Fibrosis Progression.

Lu Y, Zhang Y, Xu D, Wang Y, Pan D, Wang P Int J Mol Sci. 2022; 23(22).

PMID: 36430808 PMC: 9693363. DOI: 10.3390/ijms232214331.


α-Tocopherol Pharmacokinetics in Adults with Cystic Fibrosis: Benefits of Supplemental Vitamin C Administration.

Traber M, Leonard S, Vasu V, Morrissey B, Lei H, Atkinson J Nutrients. 2022; 14(18).

PMID: 36145092 PMC: 9505313. DOI: 10.3390/nu14183717.


References
1.
Howard M, Fischer H, Roux J, Santos B, Gullans S, Yancey P . Mammalian osmolytes and S-nitrosoglutathione promote Delta F508 cystic fibrosis transmembrane conductance regulator (CFTR) protein maturation and function. J Biol Chem. 2003; 278(37):35159-67. DOI: 10.1074/jbc.M301924200. View

2.
Cantin A, North S, Hubbard R, Crystal R . Normal alveolar epithelial lining fluid contains high levels of glutathione. J Appl Physiol (1985). 1987; 63(1):152-7. DOI: 10.1152/jappl.1987.63.1.152. View

3.
Lands L, Grey V, Smountas A, Kramer V, McKenna D . Lymphocyte glutathione levels in children with cystic fibrosis. Chest. 1999; 116(1):201-5. DOI: 10.1378/chest.116.1.201. View

4.
Sokol R . Vitamin E and neurologic function in man. Free Radic Biol Med. 1989; 6(2):189-207. DOI: 10.1016/0891-5849(89)90117-2. View

5.
Cobanoglu N, Ozcelik U, Gocmen A, Kiper N, Dogru D . Antioxidant effect of beta-carotene in cystic fibrosis and bronchiectasis: clinical and laboratory parameters of a pilot study. Acta Paediatr. 2002; 91(7):793-8. DOI: 10.1080/08035250213212. View