» Articles » PMID: 17142917

N-terminal Truncation Enables Crystallization of the Receptor-binding Domain of the FedF Bacterial Adhesin

Overview
Date 2006 Dec 5
PMID 17142917
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

FedF is the two-domain tip adhesin of F18 fimbriae from enterotoxigenic Escherichia coli. Bacterial adherence, mediated by the N-terminal receptor-binding domain of FedF to carbohydrate receptors on intestinal microvilli, causes diarrhoea and oedema disease in newly weaned piglets and induces the secretion of Shiga toxins. A truncate containing only the receptor-binding domain of FedF was found to be further cleaved at its N-terminus. Reconstruction of this N-terminal truncate rendered FedF amenable to crystallization, resulting in crystals with space group P2(1)2(1)2(1) and unit-cell parameters a = 36.20, b = 74.64, c = 99.03 A that diffracted to beyond 2 A resolution. The binding specificity of FedF was screened for on a glycan array, exposing 264 glycoconjugates, to identify specific receptors for cocrystallization with FedF.

Citing Articles

Effect of Gravity on Bacterial Adhesion to Heterogeneous Surfaces.

Hogan K, Paul S, Lin G, Fuerte-Stone J, Sokurenko E, Thomas W Pathogens. 2023; 12(7).

PMID: 37513788 PMC: 10383686. DOI: 10.3390/pathogens12070941.


Duality of β-glucan microparticles: antigen carrier and immunostimulants.

Baert K, De Geest B, De Greve H, Cox E, Devriendt B Int J Nanomedicine. 2016; 11:2463-9.

PMID: 27330289 PMC: 4898424. DOI: 10.2147/IJN.S101881.


Nanobody mediated inhibition of attachment of F18 Fimbriae expressing Escherichia coli.

Moonens K, De Kerpel M, Coddens A, Cox E, Pardon E, Remaut H PLoS One. 2014; 9(12):e114691.

PMID: 25502211 PMC: 4263667. DOI: 10.1371/journal.pone.0114691.


Structural Sampling of Glycan Interaction Profiles Reveals Mucosal Receptors for Fimbrial Adhesins of Enterotoxigenic Escherichia coli.

Lonardi E, Moonens K, Buts L, de Boer A, Olsson J, Weiss M Biology (Basel). 2014; 2(3):894-917.

PMID: 24833052 PMC: 3960879. DOI: 10.3390/biology2030894.


Glycan microarrays for decoding the glycome.

Rillahan C, Paulson J Annu Rev Biochem. 2011; 80:797-823.

PMID: 21469953 PMC: 3116967. DOI: 10.1146/annurev-biochem-061809-152236.


References
1.
Dodson K, Pinkner J, Rose T, Magnusson G, Hultgren S, Waksman G . Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell. 2001; 105(6):733-43. DOI: 10.1016/s0092-8674(01)00388-9. View

2.
Gyles C, Johnson R, Gao A, Ziebell K, Pierard D, Aleksic S . Association of enterohemorrhagic Escherichia coli hemolysin with serotypes of shiga-like-toxin-producing Escherichia coli of human and bovine origins. Appl Environ Microbiol. 1998; 64(11):4134-41. PMC: 106619. DOI: 10.1128/AEM.64.11.4134-4141.1998. View

3.
Sauer F, Futterer K, Pinkner J, Dodson K, Hultgren S, Waksman G . Structural basis of chaperone function and pilus biogenesis. Science. 1999; 285(5430):1058-61. DOI: 10.1126/science.285.5430.1058. View

4.
Imberechts H, Wild P, Charlier G, De Greve H, Lintermans P, Pohl P . Characterization of F18 fimbrial genes fedE and fedF involved in adhesion and length of enterotoxemic Escherichia coli strain 107/86. Microb Pathog. 1996; 21(3):183-92. DOI: 10.1006/mpat.1996.0053. View

5.
Newman J, Egan D, Walter T, Meged R, Berry I, Ben Jelloul M . Towards rationalization of crystallization screening for small- to medium-sized academic laboratories: the PACT/JCSG+ strategy. Acta Crystallogr D Biol Crystallogr. 2005; 61(Pt 10):1426-31. DOI: 10.1107/S0907444905024984. View