» Articles » PMID: 1712421

The Use of Gradient Flow Compensation to Separate Diffusion and Microcirculatory Flow in MRI

Overview
Journal Magn Reson Med
Publisher Wiley
Specialty Radiology
Date 1991 Jan 1
PMID 1712421
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

This paper describes a new MR imaging technique termed Modified Stejskal Tanner versus Flow Compensation (MST/FC) for the separation of diffusion and microcirculatory flow. The theory behind the sequence is explained, along with a five-component model of microcirculation applicable to any "perfusion" imaging technique. Phantom data is presented showing that (1) diffusion effects can be matched between MST and FC (suggesting the possibility of flow-compensated diffusion imaging), and (2) the technique is a quantitative method of separating diffusion and slow (less than 0.25 mm/s) tortuous flow through a Sephadex column. Furthermore, animal images show the technique to be feasible and quantitative in measuring rat brain microcirculation under normal, vasodilated (hypercarbia), and no-flow (post mortem) conditions.

Citing Articles

Effect of simultaneous multislice imaging, slice properties, and repetition time on the measured magnetic resonance biexponential intravoxel incoherent motion in the liver.

Loh M, Fuhres T, Stuprich C, Benkert T, Bickelhaupt S, Uder M PLoS One. 2024; 19(8):e0306996.

PMID: 39121035 PMC: 11315316. DOI: 10.1371/journal.pone.0306996.


Reproducibility of intravoxel incoherent motion quantification in the liver across field strengths and gradient hardware.

Simchick G, Allen T, Hernando D Magn Reson Med. 2024; 92(6):2652-2669.

PMID: 39119838 PMC: 11436311. DOI: 10.1002/mrm.30237.


Probing Renal Microstructure and Function with Advanced Diffusion MRI: Concepts, Applications, Challenges, and Future Directions.

Stabinska J, Wittsack H, Lerman L, Ljimani A, Sigmund E J Magn Reson Imaging. 2023; 60(4):1259-1277.

PMID: 37991093 PMC: 11117411. DOI: 10.1002/jmri.29127.


Impact of velocity- and acceleration-compensated encodings on signal dropout and black-blood state in diffusion-weighted magnetic resonance liver imaging at clinical TEs.

Fuhres T, Saake M, Szczepankiewicz F, Bickelhaupt S, Uder M, Laun F PLoS One. 2023; 18(10):e0291273.

PMID: 37796773 PMC: 10553293. DOI: 10.1371/journal.pone.0291273.


Feature-guided deep learning reduces signal loss and increases lesion CNR in diffusion-weighted imaging of the liver.

Fuhres T, Saake M, Lorenz J, Seuss H, Bickelhaupt S, Uder M Z Med Phys. 2023; 34(2):258-269.

PMID: 37543450 PMC: 11156785. DOI: 10.1016/j.zemedi.2023.07.005.