» Articles » PMID: 17055441

Reciprocal Gut Microbiota Transplants from Zebrafish and Mice to Germ-free Recipients Reveal Host Habitat Selection

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2006 Oct 24
PMID 17055441
Citations 414
Authors
Affiliations
Soon will be listed here.
Abstract

The gut microbiotas of zebrafish and mice share six bacterial divisions, although the specific bacteria within these divisions differ. To test how factors specific to host gut habitat shape microbial community structure, we performed reciprocal transplantations of these microbiotas into germ-free zebrafish and mouse recipients. The results reveal that communities are assembled in predictable ways. The transplanted community resembles its community of origin in terms of the lineages present, but the relative abundance of the lineages changes to resemble the normal gut microbial community composition of the recipient host. Thus, differences in community structure between zebrafish and mice arise in part from distinct selective pressures imposed within the gut habitat of each host. Nonetheless, vertebrate responses to microbial colonization of the gut are ancient: Functional genomic studies disclosed shared host responses to their compositionally distinct microbial communities and distinct microbial species that elicit conserved responses.

Citing Articles

Alcohol Use Disorder and the Gut-Brain Axis: A Narrative Review of the Role of Gut Microbiota and Implications for Treatment.

Shukla S, Hsu C Microorganisms. 2025; 13(1).

PMID: 39858835 PMC: 11767426. DOI: 10.3390/microorganisms13010067.


Differences in Gut Microbes Across Age and Sex Linked to Metabolism and Microbial Stability in a Hibernating Mammal.

Pfau M, Degregori S, Barber P, Blumstein D, Philson C Ecol Evol. 2024; 14(11):e70519.

PMID: 39524311 PMC: 11550910. DOI: 10.1002/ece3.70519.


Chronic Exposure to Environmentally Relevant Concentrations of Tetracycline Perturbs Gut Homeostasis in Zebrafish.

Jia P, Deng S, Lin X, Song L, Wang Y, Pei D Environ Health (Wash). 2024; 1(4):258-269.

PMID: 39474494 PMC: 11504622. DOI: 10.1021/envhealth.3c00072.


The Future Exploring of Gut Microbiome-Immunity Interactions: From In Vivo/Vitro Models to In Silico Innovations.

Bertorello S, Cei F, Fink D, Niccolai E, Amedei A Microorganisms. 2024; 12(9).

PMID: 39338502 PMC: 11434319. DOI: 10.3390/microorganisms12091828.


Fecal microbiota transplantation from patients with polycystic ovary syndrome induces metabolic disorders and ovarian dysfunction in germ-free mice.

Huang F, Deng Y, Zhou M, Tang R, Zhang P, Chen R BMC Microbiol. 2024; 24(1):364.

PMID: 39333864 PMC: 11437718. DOI: 10.1186/s12866-024-03513-z.


References
1.
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar . ARB: a software environment for sequence data. Nucleic Acids Res. 2004; 32(4):1363-71. PMC: 390282. DOI: 10.1093/nar/gkh293. View

2.
Ley R, Harris J, Wilcox J, Spear J, Miller S, Bebout B . Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol. 2006; 72(5):3685-95. PMC: 1472358. DOI: 10.1128/AEM.72.5.3685-3695.2006. View

3.
Sonnenburg J, Xu J, Leip D, Chen C, Westover B, Weatherford J . Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science. 2005; 307(5717):1955-9. DOI: 10.1126/science.1109051. View

4.
Backhed F, Ding H, Wang T, Hooper L, Koh G, Nagy A . The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004; 101(44):15718-23. PMC: 524219. DOI: 10.1073/pnas.0407076101. View

5.
Patton E, Zon L . The art and design of genetic screens: zebrafish. Nat Rev Genet. 2001; 2(12):956-66. DOI: 10.1038/35103567. View