» Articles » PMID: 17015432

Control of Cellular Senescence by CPEB

Overview
Journal Genes Dev
Specialty Molecular Biology
Date 2006 Oct 4
PMID 17015432
Citations 53
Authors
Affiliations
Soon will be listed here.
Abstract

Cytoplasmic polyadenylation element-binding protein (CPEB) is a sequence-specific RNA-binding protein that promotes polyadenylation-induced translation. While a CPEB knockout (KO) mouse is sterile but overtly normal, embryo fibroblasts derived from this mouse (MEFs) do not enter senescence in culture as do wild-type MEFs, but instead are immortal. Exogenous CPEB restores senescence in the KO MEFs and also induces precocious senescence in wild-type MEFs. CPEB cannot stimulate senescence in MEFs lacking the tumor suppressors p53, p19ARF, or p16(INK4A); however, the mRNAs encoding these proteins are unlikely targets of CPEB since their expression is the same in wild-type and KO MEFs. Conversely, Ras cannot induce senescence in MEFs lacking CPEB, suggesting that it may lie upstream of CPEB. One target of CPEB regulation is myc mRNA, whose unregulated translation in the KO MEFs may cause them to bypass senescence. Thus, CPEB appears to act as a translational repressor protein to control myc translation and resulting cellular senescence.

Citing Articles

Hypothalamus Transcriptome Reveals Key lncRNAs and mRNAs Associated with Fecundity in Goats.

Wei Y, Zhu C, He X, Chu M Animals (Basel). 2025; 15(5).

PMID: 40076037 PMC: 11898595. DOI: 10.3390/ani15050754.


Cytoplasmic Polyadenylation Element Binding Protein 1 and Atherosclerosis: Prospective Target and New Insights.

Zhou J, Tang C Curr Vasc Pharmacol. 2024; 22(2):95-105.

PMID: 38284693 DOI: 10.2174/0115701611258090231221082502.


A Combinatorial Code for CPEB-Mediated c-myc Repression.

Ogami K, Ogawa K, Sanpei S, Ichikawa F, Udagawa T, Hoshino S Cells. 2023; 12(19).

PMID: 37830624 PMC: 10572585. DOI: 10.3390/cells12192410.


Cpeb1b-mediated cytoplasmic polyadenylation of mRNA modulates zebrafish definitive hematopoiesis.

Heng J, Shi B, Zhou J, Zhang Y, Ma D, Yang Y Proc Natl Acad Sci U S A. 2023; 120(7):e2212212120.

PMID: 36745802 PMC: 9964029. DOI: 10.1073/pnas.2212212120.


Efficient Identification of the Regulator with the Use of the CRISPR Library and Context-Matched Database Screenings.

Tanaka Y, Kambayashi H, Yamamoto A, Onishi I, Sugita K, Matsumura M Int J Mol Sci. 2022; 23(14).

PMID: 35887071 PMC: 9317319. DOI: 10.3390/ijms23147723.


References
1.
Campisi J, GRAY H, Pardee A, Dean M, Sonenshein G . Cell-cycle control of c-myc but not c-ras expression is lost following chemical transformation. Cell. 1984; 36(2):241-7. DOI: 10.1016/0092-8674(84)90217-4. View

2.
Mendez R, Barnard D, Richter J . Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. EMBO J. 2002; 21(7):1833-44. PMC: 125948. DOI: 10.1093/emboj/21.7.1833. View

3.
Karn J, Watson J, Lowe A, Green S, Vedeckis W . Regulation of cell cycle duration by c-myc levels. Oncogene. 1989; 4(6):773-87. View

4.
Morgenstern J, Land H . Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 1990; 18(12):3587-96. PMC: 331014. DOI: 10.1093/nar/18.12.3587. View

5.
Pear W, Nolan G, Scott M, Baltimore D . Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A. 1993; 90(18):8392-6. PMC: 47362. DOI: 10.1073/pnas.90.18.8392. View