» Articles » PMID: 16973931

Transient Receptor Potential Ion Channels As Participants in Thermosensation and Thermoregulation

Overview
Specialty Physiology
Date 2006 Sep 16
PMID 16973931
Citations 151
Authors
Affiliations
Soon will be listed here.
Abstract

Living organisms must evaluate changes in environmental and internal temperatures to mount appropriate physiological and behavioral responses conducive to survival. Classical physiology has provided a wealth of information regarding the specialization of thermosensory functions among subclasses of peripheral sensory neurons and intrinsically thermosensitive neurons within the hypothalamus. However, until recently, the molecular mechanisms by which these cells carry out thermometry have remained poorly understood. The demonstration that certain ion channels of the transient receptor potential (TRP) family can be activated by increases or decreases in ambient temperature, along with the recognition of their heterogeneous expression patterns and heterogeneous temperature sensitivities, has led investigators to evaluate these proteins as candidate endogenous thermosensors. Much of this work has involved one specific channel, TRP vanilloid 1 (TRPV1), which is both a receptor for capsaicin and related pungent vanilloid compounds and a "heat receptor," capable of directly depolarizing neurons in response to temperatures >42 degrees C. Evidence for a contribution of TRPV1 to peripheral thermosensation has come from pharmacological, physiological, and genetic approaches. In contrast, although capsaicin-sensitive mechanisms clearly influence core body temperature regulation, the specific contribution of TRPV1 to this process remains a matter of debate. Besides TRPV1, at least six additional thermally sensitive TRP channels have been identified in mammals, and many of these also appear to participate in thermosensation. Moreover, the identification of invertebrate TRP channels, whose genetic ablation alters thermally driven behaviors, makes it clear that thermosensation represents an evolutionarily conserved role of this ion channel family.

Citing Articles

Convergent Agonist and Heat Activation of Nociceptor TRPM3.

Kumar S, Jin F, Park S, Choi W, Keuning S, Massimino R bioRxiv. 2025; .

PMID: 39896661 PMC: 11785169. DOI: 10.1101/2025.01.23.634542.


Qingfei Zhisou oral liquid alleviates fever-induced inflammation by regulating arachidonic acid and lysophospholipids metabolism and inhibiting hypothalamus transient receptor potential ion channels expression.

Jiaming G, Yehao Z, Yuanyuan C, Long J, Jianfeng Z, Hao G J Tradit Chin Med. 2024; 44(5):954-962.

PMID: 39380226 PMC: 11462524. DOI: 10.19852/j.cnki.jtcm.20240806.003.


TRPV1, TRPA1, and TRPM8 are expressed in axon terminals in the cornea: TRPV1 axons contain CGRP and secretogranin II; TRPA1 axons contain secretogranin 3.

Schecterson L, Pazevic A, Yang R, Matulef K, Gordon S Mol Vis. 2024; 26:392-404.

PMID: 38860239 PMC: 11163611.


Age-dependent small fiber neuropathy: Mechanistic insights from animal models.

Taub D, Woolf C Exp Neurol. 2024; 377:114811.

PMID: 38723859 PMC: 11131160. DOI: 10.1016/j.expneurol.2024.114811.


Thermosensitive TRP Channels Are Functionally Expressed and Influence the Lipogenesis in Human Meibomian Gland Cells.

Keller M, Mergler S, Li A, Zahn I, Paulsen F, Garreis F Int J Mol Sci. 2024; 25(7).

PMID: 38612853 PMC: 11012639. DOI: 10.3390/ijms25074043.