» Articles » PMID: 16859488

A Protein Extension to Shorten RNA: Elongated Elongation Factor-Tu Recognizes the D-arm of T-armless TRNAs in Nematode Mitochondria

Overview
Journal Biochem J
Specialty Biochemistry
Date 2006 Jul 25
PMID 16859488
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Nematode mitochondria possess extremely truncated tRNAs. Of 22 tRNAs, 20 lack the entire T-arm. The T-arm is necessary for the binding of canonical tRNAs and EF (elongation factor)-Tu (thermo-unstable). The nematode mitochondrial translation system employs two different EF-Tu factors named EF-Tu1 and EF-Tu2. Our previous study showed that nematode Caenorhabditis elegans EF-Tu1 binds specifically to T-armless tRNA. C. elegans EF-Tu1 has a 57-amino acid C-terminal extension that is absent from canonical EF-Tu, and the T-arm-binding residues of canonical EF-Tu are not conserved. In this study, the recognition mechanism of T-armless tRNA by EF-Tu1 was investigated. Both modification interference assays and primer extension analysis of cross-linked ternary complexes revealed that EF-Tu1 interacts not only with the tRNA acceptor stem but also with the D-arm. This is the first example of an EF-Tu recognizing the D-arm of a tRNA. The binding activity of EF-Tu1 was impaired by deletion of only 14 residues from the C-terminus, indicating that the C-terminus of EF-Tu1 is required for its binding to T-armless tRNA. These results suggest that C. elegans EF-Tu1 recognizes the D-arm instead of the T-arm by a mechanism involving its C-terminal region. This study sheds light on the co-evolution of RNA and RNA-binding proteins in nematode mitochondria.

Citing Articles

Aberrant Mitochondrial tRNA Genes Appear Frequently in Animal Evolution.

Ozerova I, Fallmann J, Morl M, Bernt M, Prohaska S, Stadler P Genome Biol Evol. 2024; 16(11).

PMID: 39437314 PMC: 11571959. DOI: 10.1093/gbe/evae232.


Anticodon table of the chloroplast genome and identification of putative quadruplet anticodons in chloroplast tRNAs.

Mohanta T, Mohanta Y, Sharma N Sci Rep. 2023; 13(1):760.

PMID: 36641535 PMC: 9840617. DOI: 10.1038/s41598-023-27886-9.


Complete mitochondrial genomes of four deep-sea echinoids: conserved mitogenome organization and new insights into the phylogeny and evolution of Echinoidea.

Sun S, Xiao N, Sha Z PeerJ. 2022; 10:e13730.

PMID: 35919401 PMC: 9339218. DOI: 10.7717/peerj.13730.


Hopeful monsters: unintended sequencing of famously malformed mite mitochondrial tRNAs reveals widespread expression and processing of sense-antisense pairs.

Warren J, Sloan D NAR Genom Bioinform. 2021; 3(1):lqaa111.

PMID: 33575653 PMC: 7803006. DOI: 10.1093/nargab/lqaa111.


Small but large enough: structural properties of armless mitochondrial tRNAs from the nematode Romanomermis culicivorax.

Juhling T, Duchardt-Ferner E, Bonin S, Wohnert J, Putz J, Florentz C Nucleic Acids Res. 2018; 46(17):9170-9180.

PMID: 29986062 PMC: 6158502. DOI: 10.1093/nar/gky593.


References
1.
Kurabayashi A, UESHIMA R . Complete sequence of the mitochondrial DNA of the primitive opisthobranch gastropod Pupa strigosa: systematic implication of the genome organization. Mol Biol Evol. 2000; 17(2):266-77. DOI: 10.1093/oxfordjournals.molbev.a026306. View

2.
Ohtsuki T, Sato A, Watanabe Y, Watanabe K . A unique serine-specific elongation factor Tu found in nematode mitochondria. Nat Struct Biol. 2002; 9(9):669-73. DOI: 10.1038/nsb826. View

3.
Qiu Y, Song D, Zhou K, Sun H . The mitochondrial sequences of Heptathela hangzhouensis and Ornithoctonus huwena reveal unique gene arrangements and atypical tRNAs. J Mol Evol. 2005; 60(1):57-71. DOI: 10.1007/s00239-004-0010-2. View

4.
Ueshima R, Asami T . Evolution: single-gene speciation by left-right reversal. Nature. 2003; 425(6959):679. DOI: 10.1038/425679a. View

5.
Sakurai M, Ohtsuki T, Watanabe K . Modification at position 9 with 1-methyladenosine is crucial for structure and function of nematode mitochondrial tRNAs lacking the entire T-arm. Nucleic Acids Res. 2005; 33(5):1653-61. PMC: 1069008. DOI: 10.1093/nar/gki309. View