Ghosh S, Clore G
Biophys Rev (Melville). 2024; 5(4):041308.
PMID: 39679202
PMC: 11637561.
DOI: 10.1063/5.0233299.
Braxton J, Shao H, Tse E, Gestwicki J, Southworth D
Nat Struct Mol Biol. 2024; 31(12):1848-1858.
PMID: 38951622
PMC: 11638070.
DOI: 10.1038/s41594-024-01352-0.
Yurkova M, Fedorov A
Biomolecules. 2022; 12(5).
PMID: 35625535
PMC: 9138447.
DOI: 10.3390/biom12050607.
Zhao Q, Liu C
Front Mol Biosci. 2018; 4:98.
PMID: 29404339
PMC: 5780408.
DOI: 10.3389/fmolb.2017.00098.
Okamoto T, Yamamoto H, Kudo I, Matsumoto K, Odaka M, Grave E
Sci Rep. 2017; 7(1):16931.
PMID: 29208924
PMC: 5717063.
DOI: 10.1038/s41598-017-17167-7.
Probing the kinetic stabilities of Friedreich's ataxia clinical variants using a solid phase GroEL chaperonin capture platform.
Correia A, Naik S, Fisher M, Gomes C
Biomolecules. 2014; 4(4):956-79.
PMID: 25333765
PMC: 4279165.
DOI: 10.3390/biom4040956.
The C-terminal tails of the bacterial chaperonin GroEL stimulate protein folding by directly altering the conformation of a substrate protein.
Weaver J, Rye H
J Biol Chem. 2014; 289(33):23219-23232.
PMID: 24970895
PMC: 4132819.
DOI: 10.1074/jbc.M114.577205.
Biomolecular robotics for chemomechanically driven guest delivery fuelled by intracellular ATP.
Biswas S, Kinbara K, Niwa T, Taguchi H, Ishii N, Watanabe S
Nat Chem. 2013; 5(7):613-20.
PMID: 23787753
DOI: 10.1038/nchem.1681.
Ultrasensitivity of an adaptive bacterial motor.
Yuan J, Berg H
J Mol Biol. 2013; 425(10):1760-4.
PMID: 23454041
PMC: 3830563.
DOI: 10.1016/j.jmb.2013.02.016.
Weak intra-ring allosteric communications of the archaeal chaperonin thermosome revealed by normal mode analysis.
Jayasinghe M, Shrestha P, Wu X, Tehver R, Stan G
Biophys J. 2012; 103(6):1285-95.
PMID: 22995501
PMC: 3446675.
DOI: 10.1016/j.bpj.2012.07.049.
Coherent conformational degrees of freedom as a structural basis for allosteric communication.
Mitternacht S, Berezovsky I
PLoS Comput Biol. 2011; 7(12):e1002301.
PMID: 22174669
PMC: 3234217.
DOI: 10.1371/journal.pcbi.1002301.
Stimulating the substrate folding activity of a single ring GroEL variant by modulating the cochaperonin GroES.
Illingworth M, Ramsey A, Zheng Z, Chen L
J Biol Chem. 2011; 286(35):30401-30408.
PMID: 21757689
PMC: 3162399.
DOI: 10.1074/jbc.M111.255935.
Protein folding and aggregation in bacteria.
Sabate R, de Groot N, Ventura S
Cell Mol Life Sci. 2010; 67(16):2695-715.
PMID: 20358253
PMC: 11115605.
DOI: 10.1007/s00018-010-0344-4.
Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases.
Thomsen N, Berger J
Mol Microbiol. 2008; 69(5):1071-90.
PMID: 18647240
PMC: 2538554.
DOI: 10.1111/j.1365-2958.2008.06364.x.
Spontaneous conformational changes in the E. coli GroEL subunit from all-atom molecular dynamics simulations.
Sliozberg Y, Abrams C
Biophys J. 2007; 93(6):1906-16.
PMID: 17513353
PMC: 1959553.
DOI: 10.1529/biophysj.107.108043.
GroEL-mediated protein folding: making the impossible, possible.
Lin Z, Rye H
Crit Rev Biochem Mol Biol. 2006; 41(4):211-39.
PMID: 16849107
PMC: 3783267.
DOI: 10.1080/10409230600760382.
Nested allosteric interactions in the cytoplasmic chaperonin containing TCP-1.
Kafri G, Willison K, Horovitz A
Protein Sci. 2001; 10(2):445-9.
PMID: 11266630
PMC: 2373951.
DOI: 10.1110/ps.44401.
Coupling between protein folding and allostery in the GroE chaperonin system.
Yifrach O, Horovitz A
Proc Natl Acad Sci U S A. 2000; 97(4):1521-4.
PMID: 10677493
PMC: 26467.
DOI: 10.1073/pnas.040449997.
Chaperone rings in protein folding and degradation.
Horwich A, Finley D
Proc Natl Acad Sci U S A. 1999; 96(20):11033-40.
PMID: 10500119
PMC: 34237.
DOI: 10.1073/pnas.96.20.11033.
The allosteric mechanism of the chaperonin GroEL: a dynamic analysis.
Ma J, Karplus M
Proc Natl Acad Sci U S A. 1998; 95(15):8502-7.
PMID: 9671707
PMC: 21105.
DOI: 10.1073/pnas.95.15.8502.