» Articles » PMID: 16636401

A 3D Reconstruction Algorithm for EIT Using a Handheld Probe for Breast Cancer Detection

Overview
Journal Physiol Meas
Date 2006 Apr 26
PMID 16636401
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

A 3D reconstruction algorithm for electrical impedance tomography is presented for determining the distribution of electrical properties inside the body, given electrical measurements made on the surface. A linearized reconstruction algorithm using planar electrode arrays in a handheld probe geometry developed by Mueller et al (1999 IEEE Trans. Biomed. Eng. 46 1379-86) has been refined and extended in this paper. This algorithm is based on linearizing the conductivity about a constant value. We have extended the distance below the electrodes at which a target can be imaged by using a combination of two regularization schemes and a weighted mesh. An appropriate combination of Tikhonov and NOSER regularization produces satisfactory static images of a 2 cm cube placed 2 cm below the array, and difference images of a 1 cm cube 4 cm away from the array. The weighted mesh allows use of fixed regularization parameters for all depths of the target.

Citing Articles

A DIRECT RECONSTRUCTION ALGORITHM FOR THE ANISOTROPIC INVERSE CONDUCTIVITY PROBLEM BASED ON CALDERÓN'S METHOD IN THE PLANE.

Murthy R, Lin Y, Shin K, Mueller J Inverse Probl. 2020; 36(12).

PMID: 33353992 PMC: 7751953. DOI: 10.1088/1361-6420/abbe5f.


A Review of Electrical Impedance Tomography in Lung Applications: Theory and Algorithms for Absolute Images.

de Castro Martins T, Sato A, Moura F, Leon Bueno de Camargo E, Silva O, Santos T Annu Rev Control. 2020; 48:442-471.

PMID: 31983885 PMC: 6980523. DOI: 10.1016/j.arcontrol.2019.05.002.


Empirical validation of statistical parametric mapping for group imaging of fast neural activity using electrical impedance tomography.

Packham B, Barnes G, Dos Santos G, Aristovich K, Gilad O, Ghosh A Physiol Meas. 2016; 37(6):951-67.

PMID: 27203477 PMC: 5717540. DOI: 10.1088/0967-3334/37/6/951.


High density trans-admittance mammography development and preliminary phantom tests.

Zhao M, Wi H, Mostofa Kamal A, McEwan A, Woo E, Oh T Biomed Eng Online. 2012; 11:75.

PMID: 23009288 PMC: 3537578. DOI: 10.1186/1475-925X-11-75.


Imaging and cancer: a review.

Fass L Mol Oncol. 2009; 2(2):115-52.

PMID: 19383333 PMC: 5527766. DOI: 10.1016/j.molonc.2008.04.001.


References
1.
Isaacson D . Distinguishability of conductivities by electric current computed tomography. IEEE Trans Med Imaging. 1986; 5(2):91-5. DOI: 10.1109/TMI.1986.4307752. View

2.
Kao T, Newell J, Saulnier G, Isaacson D . Distinguishability of inhomogeneities using planar electrode arrays and different patterns of applied excitation. Physiol Meas. 2003; 24(2):403-11. DOI: 10.1088/0967-3334/24/2/352. View

3.
Blott B, Daniell G, Meeson S . Electrical impedance tomography with compensation for electrode positioning variations. Phys Med Biol. 1998; 43(6):1731-9. DOI: 10.1088/0031-9155/43/6/025. View

4.
Bagshaw A, Liston A, Bayford R, Tizzard A, Gibson A, Tidswell A . Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method. Neuroimage. 2003; 20(2):752-64. DOI: 10.1016/S1053-8119(03)00301-X. View

5.
Aberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S . Skin cancer identification using multifrequency electrical impedance--a potential screening tool. IEEE Trans Biomed Eng. 2004; 51(12):2097-102. DOI: 10.1109/TBME.2004.836523. View