» Articles » PMID: 16606700

Probing Genomic Diversity and Evolution of Escherichia Coli O157 by Single Nucleotide Polymorphisms

Overview
Journal Genome Res
Specialty Genetics
Date 2006 Apr 12
PMID 16606700
Citations 53
Authors
Affiliations
Soon will be listed here.
Abstract

Infections by Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) are the predominant cause of bloody diarrhea and hemolytic uremic syndrome in the United States. In silico comparison of the two complete STEC O157 genomes (Sakai and EDL933) revealed a strikingly high level of sequence identity in orthologous protein-coding genes, limiting the use of nucleotide sequences to study the evolution and epidemiology of this bacterial pathogen. To systematically examine single nucleotide polymorphisms (SNPs) at a genome scale, we designed comparative genome sequencing microarrays and analyzed 1199 chromosomal genes (a total of 1,167,948 bp) and 92,721 bp of the large virulence plasmid (pO157) of eleven outbreak-associated STEC O157 strains. We discovered 906 SNPs in 523 chromosomal genes and observed a high level of DNA polymorphisms among the pO157 plasmids. Based on a uniform rate of synonymous substitution for Escherichia coli and Salmonella enterica (4.7x10(-9) per site per year), we estimate that the most recent common ancestor of the contemporary beta-glucuronidase-negative, non-sorbitolfermenting STEC O157 strains existed ca. 40 thousand years ago. The phylogeny of the STEC O157 strains based on the informative synonymous SNPs was compared to the maximum parsimony trees inferred from pulsed-field gel electrophoresis and multilocus variable numbers of tandem repeats analysis. The topological discrepancies indicate that, in contrast to the synonymous mutations, parts of STEC O157 genomes have evolved through different mechanisms with highly variable divergence rates. The SNP loci reported here will provide useful genetic markers for developing high-throughput methods for fine-resolution genotyping of STEC O157. Functional characterization of nucleotide polymorphisms should shed new insights on the evolution, epidemiology, and pathogenesis of STEC O157 and related pathogens.

Citing Articles

Nutrition of within the intestinal microbiome.

Doranga S, Krogfelt K, Cohen P, Conway T EcoSal Plus. 2024; 12(1):eesp00062023.

PMID: 38417452 PMC: 11636361. DOI: 10.1128/ecosalplus.esp-0006-2023.


Whole-Genome Sequencing of Shiga Toxin-Producing for Characterization and Outbreak Investigation.

Blankenship H, Dietrich S, Burgess E, Wholehan J, Soehnlen M, Manning S Microorganisms. 2023; 11(5).

PMID: 37317272 PMC: 10224053. DOI: 10.3390/microorganisms11051298.


Genetic Diversity of Non-O157 Shiga Toxin-Producing Recovered From Patients in Michigan and Connecticut.

Blankenship H, Mosci R, Phan Q, Fontana J, Rudrik J, Manning S Front Microbiol. 2020; 11:529.

PMID: 32300338 PMC: 7145412. DOI: 10.3389/fmicb.2020.00529.


Comparative genomics reveals structural and functional features specific to the genome of a foodborne Escherichia coli O157:H7.

Sharma V, Akavaram S, Schaut R, Bayles D BMC Genomics. 2019; 20(1):196.

PMID: 30849935 PMC: 6408774. DOI: 10.1186/s12864-019-5568-6.


Discovery of numerous novel small genes in the intergenic regions of the Escherichia coli O157:H7 Sakai genome.

Hucker S, Ardern Z, Goldberg T, Schafferhans A, Bernhofer M, Vestergaard G PLoS One. 2017; 12(9):e0184119.

PMID: 28902868 PMC: 5597208. DOI: 10.1371/journal.pone.0184119.


References
1.
Weissman S, Moseley S, Dykhuizen D, Sokurenko E . Enterobacterial adhesins and the case for studying SNPs in bacteria. Trends Microbiol. 2003; 11(3):115-7. DOI: 10.1016/s0966-842x(03)00010-6. View

2.
Takezaki N, Rzhetsky A, Nei M . Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol. 1995; 12(5):823-33. DOI: 10.1093/oxfordjournals.molbev.a040259. View

3.
Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K . Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 2001; 8(1):11-22. DOI: 10.1093/dnares/8.1.11. View

4.
Lawrence J, Ochman H . Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci U S A. 1998; 95(16):9413-7. PMC: 21352. DOI: 10.1073/pnas.95.16.9413. View

5.
Green R, Yue Y, Nelson C, Blattner F, Sussman M, Cerrina F . Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat Biotechnol. 1999; 17(10):974-8. DOI: 10.1038/13664. View