» Articles » PMID: 16567807

Interleukin-1beta Enhances GABAA Receptor Cell-surface Expression by a Phosphatidylinositol 3-kinase/Akt Pathway: Relevance to Sepsis-associated Encephalopathy

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2006 Mar 29
PMID 16567807
Citations 65
Authors
Affiliations
Soon will be listed here.
Abstract

Sepsis-associated encephalopathy (SAE) is a frequent but poorly understood neurological complication in sepsis that negatively influences survival. Here we present clinical and experimental evidence that this brain dysfunction may be related to altered neurotransmission produced by inflammatory mediators. Compared with septic patients, SAE patients had higher interleukin-1beta (IL-1beta) plasma levels; interestingly, these levels decreased once the encephalopathy was resolved. A putative IL-1beta effect on type A gamma-aminobutyric acid receptors (GABA(A)Rs), which mediate fast synaptic transmission in most cerebral inhibitory synapses in mammals, was investigated in cultured hippocampal neurons and in Xenopus oocytes expressing native or foreign rat brain GABA(A)Rs, respectively. Confocal images in both cell types revealed that IL-1beta increases recruitment of GABA(A)Rs to the cell surface. Moreover, brief applications of IL-1beta to voltage-clamped oocytes yielded a delayed potentiation of the GABA-elicited chloride currents (I(GABA)); this effect was suppressed by IL-1ra, the natural IL-1 receptor (IL-1RI) antagonist. Western blot analysis combined with I(GABA) recording and confocal images of GABA(A) Rs in oocytes showed that IL-1beta stimulates the IL-1RI-dependent phosphatidylinositol 3-kinase activation and the consequent facilitation of phospho-Akt-mediated insertion of GABA(A)Rs into the cell surface. The interruption of this signaling pathway by specific phosphatidylinositol 3-kinase or Akt inhibitors suppresses the cytokine-mediated effects on GABA(A)R, whereas activation of the conditionally active form of Akt1 (myr-Akt1.ER*) with 4-hydroxytamoxifen reproduces the effects. These findings point to a previously unrecognized signaling pathway that connects IL-1beta with increased "GABAergic tone." We propose that through this mechanism IL-1beta might alter synaptic strength at central GABAergic synapses and so contribute to the cognitive dysfunction observed in SAE.

Citing Articles

Molecular and cellular mechanisms of developmental synapse elimination in the cerebellum: Involvement of autism spectrum disorder-related genes.

Watanabe T, Kano M Proc Jpn Acad Ser B Phys Biol Sci. 2024; 100(9):508-523.

PMID: 39522973 PMC: 11635086. DOI: 10.2183/pjab.100.034.


The Effects of Ionotropic GABA Receptor Blockage on the Brain in Rats with Induced Sepsis.

Ates G, Ozkok E, Gundogan G, Tamer S Mol Neurobiol. 2024; 62(3):3544-3555.

PMID: 39312068 DOI: 10.1007/s12035-024-04505-w.


N-acetyltransferase 10 mediates cognitive dysfunction through the acetylation of GABAR1 mRNA in sepsis-associated encephalopathy.

Gao S, Shen R, Li J, Jiang Y, Sun H, Wu X Proc Natl Acad Sci U S A. 2024; 121(36):e2410564121.

PMID: 39190359 PMC: 11388286. DOI: 10.1073/pnas.2410564121.


Glutathione in HIV-Associated Neurocognitive Disorders.

Erdos T, Masuda M, Venketaraman V Curr Issues Mol Biol. 2024; 46(6):5530-5549.

PMID: 38921002 PMC: 11202908. DOI: 10.3390/cimb46060330.


IL-1β, the first piece to the puzzle of sepsis-related cognitive impairment?.

Zhu Q, Wan L, Huang H, Liao Z Front Neurosci. 2024; 18:1370406.

PMID: 38665289 PMC: 11043581. DOI: 10.3389/fnins.2024.1370406.