Richter S, Massman L, Stuehr D, Sweeny E
Front Cell Dev Biol. 2023; 11:1116833.
PMID: 36776559
PMC: 9909703.
DOI: 10.3389/fcell.2023.1116833.
Murer E, Davenport K, Siojo E, Day H
Biochem J. 1981; 194(1):187-92.
PMID: 7305976
PMC: 1162732.
DOI: 10.1042/bj1940187.
McCarthy J, Bodroghy R, Jahrling P, Sobocinski P
Infect Immun. 1980; 30(3):824-31.
PMID: 7228389
PMC: 551389.
DOI: 10.1128/iai.30.3.824-831.1980.
Kato T, Wokalek H, Schopf E, Eggert H, Ernst M, Rietschel E
Klin Wochenschr. 1981; 59(5):203-21.
PMID: 7218733
DOI: 10.1007/BF01476577.
Williams A, COLE P
Immunology. 1981; 44(4):847-58.
PMID: 6274795
PMC: 1554984.
Properties of calcium ionophore-induced generation of superoxide anion by human neutrophils.
Smith R, Iden S
Inflammation. 1981; 5(3):177-92.
PMID: 6271675
DOI: 10.1007/BF00914442.
Dissociation of opsonized particle phagocytosis and respiratory burst activity in an Epstein-Barr virus-infected myeloid cell line.
Newburger P, Pagano J, Greenberger J, Karpas A, Cohen H
J Cell Biol. 1980; 85(3):549-57.
PMID: 6248564
PMC: 2111443.
DOI: 10.1083/jcb.85.3.549.
Increased heat production proportional to oxygen consumption in human neutrophils activated with phorbol-12-myristate-13-acetate.
Eftimiadi C, RIALDI G
Cell Biophys. 1982; 4(2-3):231-44.
PMID: 6181885
DOI: 10.1007/BF02918314.
Interactions of bromide, iodide, and fluoride with the pathways of chloride transport and diffusion in human neutrophils.
Simchowitz L
J Gen Physiol. 1988; 91(6):835-60.
PMID: 3047312
PMC: 2217627.
DOI: 10.1085/jgp.91.6.835.
The mechanism of action of lymphokines. VIII. Lymphokine-enhanced spontaneous hydrogen peroxide production by macrophages.
Freund M, Pick E
Immunology. 1985; 54(1):35-45.
PMID: 2982731
PMC: 1454866.
Activation of electropermeabilized neutrophils by adenosine 5'-[gamma-thio]triphosphate (ATP[S]). Role of phosphatases in stimulus-response coupling.
Grinstein S, Hill M, Furuya W
Biochem J. 1989; 261(3):755-9.
PMID: 2552991
PMC: 1138896.
DOI: 10.1042/bj2610755.
NPGB-induced inhibition of superoxide anion production by normal Lewis rat macrophages.
Arduini A, Mancinelli G, Belfiglio M, DEJULIA J, Damonti V, Storto S
Neurochem Res. 1989; 14(1):55-61.
PMID: 2540444
DOI: 10.1007/BF00969758.
Mechanism of vanadate-induced activation of tyrosine phosphorylation and of the respiratory burst in HL60 cells. Role of reduced oxygen metabolites.
Trudel S, Paquet M, Grinstein S
Biochem J. 1991; 276 ( Pt 3):611-9.
PMID: 1712198
PMC: 1151049.
DOI: 10.1042/bj2760611.
The origin of the chemiluminescence of phagocytosing granulocytes.
Cheson B, CHRISTENSEN R, Sperling R, Kohler B, Babior B
J Clin Invest. 1976; 58(4):789-96.
PMID: 965486
PMC: 333240.
DOI: 10.1172/JCI108530.
Detection, pathogenesis, and prevention of damage to human granulocytes caused by interaction with nylon wool fiber. Implications for filtration leukapheresis.
Klock J, Stossel T
J Clin Invest. 1977; 60(5):1183-90.
PMID: 578517
PMC: 372472.
DOI: 10.1172/JCI108871.
Extracellular cytolysis by activated macrophages and granulocytes. I. Pharmacologic triggering of effector cells and the release of hydrogen peroxide.
Nathan C, Brukner L, Silverstein S, COHN Z
J Exp Med. 1979; 149(1):84-99.
PMID: 368287
PMC: 2184749.
DOI: 10.1084/jem.149.1.84.
Pyridine nucleotide-dependent superoxide production by a cell-free system from human granulocytes.
Babior B, Curnutte J, Kipnes B
J Clin Invest. 1975; 56(4):1035-42.
PMID: 239968
PMC: 301959.
DOI: 10.1172/JCI108150.
Endotoxin in vitro interactions with human neutrophils: depression of chemiluminescence, oxygen consumption, superoxide production, and killing.
Proctor R
Infect Immun. 1979; 25(3):912-21.
PMID: 227788
PMC: 414534.
DOI: 10.1128/iai.25.3.912-921.1979.
Unique characteristics of superoxide production by human eosinophils in eosinophilic states.
Tauber A, Goetzl E, Babior B
Inflammation. 1979; 3(3):261-72.
PMID: 225266
DOI: 10.1007/BF00914183.
Evidence for the role of superoxide radicals in neutrophil-mediated cytotoxicity.
Simchowitz L, Spilberg I
Immunology. 1979; 37(2):301-9.
PMID: 223976
PMC: 1457492.