» Articles » PMID: 16389946

Angiogenesis in Gliomas: Imaging and Experimental Therapeutics

Overview
Journal Brain Pathol
Date 2006 Jan 5
PMID 16389946
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Much of the interest in angiogenesis and hypoxia has led to investigating diagnostic imaging methodologies and developing efficacious agents against angiogenesis in gliomas. In many ways, because of the cytostatic effects of these agents on tumor growth and tumor-associated endothelial cells, the effects of therapy are not immediately evident. Hence finding clinically applicable imaging tools and pathologic surrogate markers is an important step in translating glioma biology to therapeutics. There are a variety of strategies in the approach to experimental therapeutics that target the hypoxia-inducible factor pathway, the endogenous antiangiogenic and proangiogenic factors and their receptors, adhesion molecules, matrix proteases and cytokines, and the existing vasculature. We discuss the rationale for antiangiogenesis as a treatment strategy, the preclinical and clinical assessment of antiangiogenic interventions and finally focus on the various treatment strategies, including combining antiangiogenic drugs with radiation and chemotherapy.

Citing Articles

Cell-Based Nanoparticles Delivery Systems for Targeted Cancer Therapy: Lessons from Anti-Angiogenesis Treatments.

De La Torre P, Perez-Lorenzo M, Alcazar-Garrido A, Flores A Molecules. 2020; 25(3).

PMID: 32046010 PMC: 7038177. DOI: 10.3390/molecules25030715.


Nanocarriers and nonviral methods for delivering antiangiogenic factors for glioblastoma therapy: the story so far.

Clavreul A, Pourbaghi-Masouleh M, Roger E, Menei P Int J Nanomedicine. 2019; 14:2497-2513.

PMID: 31040671 PMC: 6461002. DOI: 10.2147/IJN.S194858.


Glioma Grading and Determination of IDH Mutation Status and ATRX loss by DCE and ASL Perfusion.

Brendle C, Hempel J, Schittenhelm J, Skardelly M, Tabatabai G, Bender B Clin Neuroradiol. 2017; 28(3):421-428.

PMID: 28488024 DOI: 10.1007/s00062-017-0590-z.


Measurable Supratentorial White Matter Volume Changes in Patients with Diffuse Intrinsic Pontine Glioma Treated with an Anti-Vascular Endothelial Growth Factor Agent, Steroids, and Radiation.

Svolos P, Reddick W, Edwards A, Sykes A, Li Y, Glass J AJNR Am J Neuroradiol. 2017; 38(6):1235-1241.

PMID: 28428205 PMC: 5471144. DOI: 10.3174/ajnr.A5159.


Glioblastoma, hypoxia and autophagy: a survival-prone 'ménage-à-trois'.

Jawhari S, Ratinaud M, Verdier M Cell Death Dis. 2016; 7(10):e2434.

PMID: 27787518 PMC: 5133985. DOI: 10.1038/cddis.2016.318.


References
1.
Semenza G . Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003; 3(10):721-32. DOI: 10.1038/nrc1187. View

2.
Herschman H . Molecular imaging: looking at problems, seeing solutions. Science. 2003; 302(5645):605-8. DOI: 10.1126/science.1090585. View

3.
Nabeshima K, Shimao Y, Sato S, Kataoka H, Moriyama T, Kawano H . Expression of c-Met correlates with grade of malignancy in human astrocytic tumours: an immunohistochemical study. Histopathology. 1998; 31(5):436-43. DOI: 10.1046/j.1365-2559.1997.3010889.x. View

4.
Law M, Yang S, Babb J, Knopp E, Golfinos J, Zagzag D . Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol. 2004; 25(5):746-55. PMC: 7974484. View

5.
Gondi C, Lakka S, Yanamandra N, Olivero W, Dinh D, Gujrati M . Adenovirus-mediated expression of antisense urokinase plasminogen activator receptor and antisense cathepsin B inhibits tumor growth, invasion, and angiogenesis in gliomas. Cancer Res. 2004; 64(12):4069-77. DOI: 10.1158/0008-5472.CAN-04-1243. View