A Microscale in Vitro Physiological Model of the Liver: Predictive Screens for Drug Metabolism and Enzyme Induction
Overview
Endocrinology
Authors
Affiliations
In vitro models of the liver using isolated primary hepatocytes have been used as screens for measuring the metabolism, toxicity and efficacy of xenobiotics, for studying hepatocyte proliferation, and as bioartificial liver support systems. Yet, primary isolated hepatocytes rapidly lose liver specific functions when maintained under standard in vitro cell culture conditions. Many modifications to conventional culture methods have been developed to foster retention of hepatocyte function. Still, not all of the important functions -- especially the biotransformation functions of the liver -- can as yet be replicated at desired levels, prompting continued development of new culture systems. In the first part of this article, we review primary hepatocyte in vitro systems used in metabolism and enzyme induction studies. We then describe a scalable microreactor system that fosters development of 3D-perfused micro-tissue units and show that primary rat cells cultured in this system are substantially closer to native liver compared to cells cultured by other in vitro methods, as assessed by a broad spectrum of gene expression, protein expression and biochemical activity metrics. These results provide a foundation for extension of this culture model to other applications in drug discovery -- as a model to study drug-drug interactions, as a model for the assessment of acute and chronic liver toxicity arising from exposure to drugs or environmental agents; and as a disease model for the study of viral hepatitis infection and cancer metastasis.
Current trends and future prospects of drug repositioning in gastrointestinal oncology.
Fatemi N, Karimpour M, Bahrami H, Zali M, Chaleshi V, Riccio A Front Pharmacol. 2024; 14:1329244.
PMID: 38239190 PMC: 10794567. DOI: 10.3389/fphar.2023.1329244.
Microfluidic technology for cell biology-related applications: a review.
Mukherjee J, Chaturvedi D, Mishra S, Jain R, Dandekar P J Biol Phys. 2023; 50(1):1-27.
PMID: 38055086 PMC: 10864244. DOI: 10.1007/s10867-023-09646-y.
Antypas H, Zhang T, Choong F, Melican K, Richter-Dahlfors A FEMS Microbes. 2023; 4:xtad007.
PMID: 37333433 PMC: 10117878. DOI: 10.1093/femsmc/xtad007.
Bioengineering liver microtissues for modeling non-alcoholic fatty liver disease.
Aasadollahei N, Rezaei N, Golroo R, Agarwal T, Vosough M, Piryaei A EXCLI J. 2023; 22:367-391.
PMID: 37223084 PMC: 10201011. DOI: 10.17179/excli2022-5892.
Liu J, Madruga L, Yuan Y, Kipper M, Khetani S Adv Healthc Mater. 2023; 12(19):e2202302.
PMID: 36947401 PMC: 11469040. DOI: 10.1002/adhm.202202302.