» Articles » PMID: 16222339

The Translesion DNA Polymerase Theta Plays a Dominant Role in Immunoglobulin Gene Somatic Hypermutation

Overview
Journal EMBO J
Date 2005 Oct 14
PMID 16222339
Citations 64
Authors
Affiliations
Soon will be listed here.
Abstract

Immunoglobulin (Ig) somatic hypermutation (SHM) critically underlies the generation of high-affinity antibodies. Mutations can be introduced by error-prone polymerases such as polymerase zeta (Rev3), a mispair extender, and polymerase eta, a mispair inserter with a preference for dA/dT, while repairing DNA lesions initiated by AID-mediated deamination of dC to yield dU:dG mismatches. The partial impairment of SHM observed in the absence of these polymerases led us to hypothesize a main role for another translesion DNA polymerase. Here, we show that deletion in C57BL/6J mice of the translesion polymerase theta, which possesses a dual nucleotide mispair inserter-extender function, results in greater than 60% decrease of mutations in antigen-selected V186.2DJ(H) transcripts and greater than 80% decrease in mutations in the Ig H chain intronic J(H)4-iEmu sequence, together with significant alterations in the spectrum of the residual mutations. Thus, polymerase theta plays a dominant role in SHM, possibly by introducing mismatches while bypassing abasic sites generated by UDG-mediated deglycosylation of AID-effected dU, by extending DNA past such abasic sites and by synthesizing DNA during dU:dG mismatch repair.

Citing Articles

Molecular mechanisms of DNA lesion and repair during antibody somatic hypermutation.

Hao Q, Li J, Yeap L Sci China Life Sci. 2024; 67(11):2344-2353.

PMID: 39048716 DOI: 10.1007/s11427-024-2615-1.


Implications of Translesion DNA Synthesis Polymerases on Genomic Stability and Human Health.

Venkadakrishnan J, Lahane G, Dhar A, Xiao W, Bhat K, Pandita T Mol Cell Biol. 2023; 43(8):401-425.

PMID: 37439479 PMC: 10448981. DOI: 10.1080/10985549.2023.2224199.


B cell class switch recombination is regulated by DYRK1A through MSH6 phosphorylation.

Stoler-Barak L, Harris E, Peres A, Hezroni H, Kuka M, Di Lucia P Nat Commun. 2023; 14(1):1462.

PMID: 36927854 PMC: 10020581. DOI: 10.1038/s41467-023-37205-5.


Resistance to DNA repair inhibitors in cancer.

Baxter J, Zatreanu D, Pettitt S, Lord C Mol Oncol. 2022; 16(21):3811-3827.

PMID: 35567571 PMC: 9627783. DOI: 10.1002/1878-0261.13224.


Unravelling roles of error-prone DNA polymerases in shaping cancer genomes.

Vaziri C, Rogozin I, Gu Q, Wu D, Day T Oncogene. 2021; 40(48):6549-6565.

PMID: 34663880 PMC: 8639439. DOI: 10.1038/s41388-021-02032-9.


References
1.
Delbos F, De Smet A, Faili A, Aoufouchi S, Weill J, Reynaud C . Contribution of DNA polymerase eta to immunoglobulin gene hypermutation in the mouse. J Exp Med. 2005; 201(8):1191-6. PMC: 2213152. DOI: 10.1084/jem.20050292. View

2.
Diaz M, Lawrence C . An update on the role of translesion synthesis DNA polymerases in Ig hypermutation. Trends Immunol. 2005; 26(4):215-20. DOI: 10.1016/j.it.2005.02.008. View

3.
Martomo S, Yang W, Wersto R, Ohkumo T, Kondo Y, Yokoi M . Different mutation signatures in DNA polymerase eta- and MSH6-deficient mice suggest separate roles in antibody diversification. Proc Natl Acad Sci U S A. 2005; 102(24):8656-61. PMC: 1150827. DOI: 10.1073/pnas.0501852102. View

4.
Xu Z, Fulop Z, Zhong Y, Evinger 3rd A, Zan H, Casali P . DNA lesions and repair in immunoglobulin class switch recombination and somatic hypermutation. Ann N Y Acad Sci. 2005; 1050:146-62. PMC: 4621013. DOI: 10.1196/annals.1313.119. View

5.
Matsuda T, Bebenek K, Masutani C, Hanaoka F, Kunkel T . Low fidelity DNA synthesis by human DNA polymerase-eta. Nature. 2000; 404(6781):1011-3. DOI: 10.1038/35010014. View