» Articles » PMID: 16155182

Constraining Ribosomal RNA Conformational Space

Overview
Specialty Biochemistry
Date 2005 Sep 13
PMID 16155182
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Despite the potential for many possible secondary-structure conformations, the native sequence of ribosomal RNA (rRNA) is able to find the correct and universally conserved core fold. This study reports a computational analysis investigating two mechanisms that appear to constrain rRNA secondary-structure conformational space: ribosomal proteins and rRNA sequence composition. The analysis was carried out by using rRNA-ribosomal protein interaction data for the Escherichia coli 16S rRNA and free energy minimization software for secondary-structure prediction. The results indicate that selection pressures on rRNA sequence composition and ribosomal protein-rRNA interaction play a key role in constraining the rRNA secondary structure to a single stable form.

Citing Articles

Conserved and variable structural elements in the 5' untranslated region of two hypoviruses from the filamentous fungus Cryphonectria parasitica.

Mu R, Romero T, Hanley K, Dawe A Virus Res. 2011; 161(2):203-8.

PMID: 21884737 PMC: 3837689. DOI: 10.1016/j.virusres.2011.07.023.


The origin and evolution of the ribosome.

Smith T, Lee J, Gutell R, Hartman H Biol Direct. 2008; 3:16.

PMID: 18430223 PMC: 2386862. DOI: 10.1186/1745-6150-3-16.


Intranucleolar sites of ribosome biogenesis defined by the localization of early binding ribosomal proteins.

Kruger T, Zentgraf H, Scheer U J Cell Biol. 2007; 177(4):573-8.

PMID: 17517959 PMC: 2064203. DOI: 10.1083/jcb.200612048.


The archaeal origins of the eukaryotic translational system.

Hartman H, Favaretto P, Smith T Archaea. 2006; 2(1):1-9.

PMID: 16877317 PMC: 2685589. DOI: 10.1155/2006/431618.


Computer simulation of chaperone effects of Archaeal C/D box sRNA binding on rRNA folding.

Schoemaker R, Gultyaev A Nucleic Acids Res. 2006; 34(7):2015-26.

PMID: 16614451 PMC: 1435978. DOI: 10.1093/nar/gkl154.

References
1.
Tinoco Jr I, Bustamante C . How RNA folds. J Mol Biol. 1999; 293(2):271-81. DOI: 10.1006/jmbi.1999.3001. View

2.
Noller H . The driving force for molecular evolution of translation. RNA. 2004; 10(12):1833-7. PMC: 1370670. DOI: 10.1261/rna.7142404. View

3.
Wimberly B, Brodersen D, Clemons Jr W, Morgan-Warren R, Carter A, Vonrhein C . Structure of the 30S ribosomal subunit. Nature. 2000; 407(6802):327-39. DOI: 10.1038/35030006. View

4.
Brodersen D, Clemons Jr W, Carter A, Wimberly B, Ramakrishnan V . Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA. J Mol Biol. 2002; 316(3):725-68. DOI: 10.1006/jmbi.2001.5359. View

5.
Lorsch J . RNA chaperones exist and DEAD box proteins get a life. Cell. 2002; 109(7):797-800. DOI: 10.1016/s0092-8674(02)00804-8. View