» Articles » PMID: 16054088

Mitochondrial Dysfunction Resulting from Loss of Cytochrome C Impairs Cellular Oxygen Sensing and Hypoxic HIF-alpha Activation

Overview
Journal Cell Metab
Publisher Cell Press
Date 2005 Aug 2
PMID 16054088
Citations 274
Authors
Affiliations
Soon will be listed here.
Abstract

While cellular responses to low oxygen (O(2)) or hypoxia have been studied extensively, the precise identity of mammalian cellular O(2) sensors remains controversial. Using murine embryonic cells lacking cytochrome c, and therefore mitochondrial activity, we show that mitochondrial reactive oxygen species (mtROS) are essential for proper O(2) sensing and subsequent HIF-1 alpha and HIF-2 alpha stabilization at 1.5% O(2). In the absence of this signal, HIF-alpha subunits continue to be degraded. Furthermore, exogenous treatment with H(2)O(2) or severe O(2) deprivation is sufficient to stabilize HIF-alpha even in the absence of cytochrome c and functional mitochondria. These results provide genetic evidence indicating that mtROS act upstream of prolyl hydroxylases in regulating HIF-1 alpha and HIF-2 alpha in this O(2)-sensing pathway.

Citing Articles

Optical imaging provides flow-cytometry-like single-cell level analysis of HIF-1-mediated metabolic changes in radioresistant head and neck squamous carcinoma cells.

Yan J, Goncalves C, Saha P, Furdui C, Zhu C Biophotonics Discov. 2025; 2(1).

PMID: 39917319 PMC: 11801402. DOI: 10.1117/1.bios.2.1.012702.


Pulmonary Hypertension: Pharmacological and Non-Pharmacological Therapies.

Tsai J, Malik S, Tjen-A-Looi S Life (Basel). 2024; 14(10).

PMID: 39459565 PMC: 11509317. DOI: 10.3390/life14101265.


Hypoxia inducible factor (HIF) 3α prevents COPD by inhibiting alveolar epithelial cell ferroptosis via the HIF-3α-GPx4 axis.

Jiang J, Zheng Z, Chen S, Liu J, Jia J, Huang Y Theranostics. 2024; 14(14):5512-5527.

PMID: 39310101 PMC: 11413794. DOI: 10.7150/thno.99237.


Adipose Tissue Hypoxia in Obesity: Clinical Reappraisal of Hypoxia Hypothesis.

Engin A Adv Exp Med Biol. 2024; 1460:329-356.

PMID: 39287857 DOI: 10.1007/978-3-031-63657-8_11.


Molecular signaling and clinical implications in the human aging-cancer cycle.

Rezaeian A, Wei W Semin Cancer Biol. 2024; 106-107:28-42.

PMID: 39197809 PMC: 11625621. DOI: 10.1016/j.semcancer.2024.08.003.


References
1.
Metzen E, Berchner-Pfannschmidt U, Stengel P, Marxsen J, Stolze I, Klinger M . Intracellular localisation of human HIF-1 alpha hydroxylases: implications for oxygen sensing. J Cell Sci. 2003; 116(Pt 7):1319-26. DOI: 10.1242/jcs.00318. View

2.
Guzy R, Hoyos B, Robin E, Chen H, Liu L, Mansfield K . Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005; 1(6):401-8. DOI: 10.1016/j.cmet.2005.05.001. View

3.
Sanjuan-Pla A, Cervera A, Apostolova N, Garcia-Bou R, Victor V, Murphy M . A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signaling of HIF-1alpha. FEBS Lett. 2005; 579(12):2669-74. DOI: 10.1016/j.febslet.2005.03.088. View

4.
Selak M, Armour S, MacKenzie E, Boulahbel H, Watson D, Mansfield K . Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005; 7(1):77-85. DOI: 10.1016/j.ccr.2004.11.022. View

5.
Chandel N, Maltepe E, GOLDWASSER E, Mathieu C, Simon M, Schumacker P . Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A. 1998; 95(20):11715-20. PMC: 21706. DOI: 10.1073/pnas.95.20.11715. View