» Articles » PMID: 15912128

Glibenclamide Depletes ATP in Renal Proximal Tubular Cells by Interfering with Mitochondrial Metabolism

Overview
Journal Br J Pharmacol
Publisher Wiley
Specialty Pharmacology
Date 2005 May 25
PMID 15912128
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Sulfonylurea drugs, like glibenclamide, stimulate insulin secretion by blocking ATP-sensitive potassium channels on pancreatic beta cells. Renal tubular epithelial cells possess a different class of K(ATP) channels with much lower affinities for sulfonylurea drugs, necessitating the use of micromolar glibenclamide concentrations to study these channels. Here, we describe the toxic effects of these concentrations on mitochondrial energy metabolism in freshly isolated renal proximal tubular cells. Glibenclamide, at concentrations of 50 and 100 microM, reduced intracellular ATP levels by 28+/-4 and 53+/-5%, respectively (P<0.01). This decline in ATP could be attributed to a dose-dependent inhibition of mitochondrial respiration. Glibenclamide (10-500 microM) inhibited ADP-stimulated mitochondrial oxygen consumption. In addition to this toxic effect, specific association of radiolabeled and fluorescent glibenclamide to renal mitochondria was found. Association of [(3)H]glibenclamide with renal mitochondria revealed a low-affinity site with a K(D) of 16+/-6 microM and a B(max) of 167+/-29 pmol mg(-1). We conclude that micromolar concentrations of glibenclamide interfere with mitochondrial bioenergetics and, therefore, should be used with care for inhibition of epithelial K(ATP) channels.

Citing Articles

The impact of ATP-sensitive potassium channel modulation on mitochondria in a Parkinson's disease model using SH-SY5Y cells depends on their differentiation state.

Evinova A, Baranovicova E, Hajduchova D, Dibdiakova K, Baranova I, Racay P J Bioenerg Biomembr. 2024; 56(4):347-360.

PMID: 38689156 PMC: 11217133. DOI: 10.1007/s10863-024-10018-x.


Validation of Freshly Isolated Rat Renal Cells as a Tool for Preclinical Assessment of Radiolabeled Receptor-Specific Peptide Uptake in the Kidney.

Barta P, Nachtigal P, Maixnerova J, Zemankova L, Trejtnar F Pharmaceuticals (Basel). 2023; 16(5).

PMID: 37242479 PMC: 10223737. DOI: 10.3390/ph16050696.


Impact of Membrane Voltage on Formation and Stability of Human Renal Proximal Tubules .

Adelfio M, Bonzanni M, Levin M, Kaplan D ACS Biomater Sci Eng. 2022; 8(3):1239-1246.

PMID: 35157435 PMC: 9906498. DOI: 10.1021/acsbiomaterials.1c01163.


Hemolysis is a primary ATP-release mechanism in human erythrocytes.

Sikora J, Orlov S, Furuya K, Grygorczyk R Blood. 2014; 124(13):2150-7.

PMID: 25097178 PMC: 4186543. DOI: 10.1182/blood-2014-05-572024.


Comparison of two sulfonylureas with high and low myocardial K(ATP) channel affinity on myocardial infarct size and metabolism in a rat model of type 2 diabetes.

Kristiansen S, Lofgren B, Nielsen J, Stottrup N, Buhl E, Nielsen-Kudsk J Diabetologia. 2010; 54(2):451-8.

PMID: 21104069 DOI: 10.1007/s00125-010-1970-y.


References
1.
Fromenty B, FISCH C, Berson A, Letteron P, Larrey D, Pessayre D . Dual effect of amiodarone on mitochondrial respiration. Initial protonophoric uncoupling effect followed by inhibition of the respiratory chain at the levels of complex I and complex II. J Pharmacol Exp Ther. 1990; 255(3):1377-84. View

2.
EPSTEIN F . Oxygen and renal metabolism. Kidney Int. 1997; 51(2):381-5. DOI: 10.1038/ki.1997.50. View

3.
Leyssens A, Nowicky A, Patterson L, Crompton M, Duchen M . The relationship between mitochondrial state, ATP hydrolysis, [Mg2+]i and [Ca2+]i studied in isolated rat cardiomyocytes. J Physiol. 1996; 496 ( Pt 1):111-28. PMC: 1160828. DOI: 10.1113/jphysiol.1996.sp021669. View

4.
Ashcroft S, Ashcroft F . Properties and functions of ATP-sensitive K-channels. Cell Signal. 1990; 2(3):197-214. DOI: 10.1016/0898-6568(90)90048-f. View

5.
Terada H . Uncouplers of oxidative phosphorylation. Environ Health Perspect. 1990; 87:213-8. PMC: 1567840. DOI: 10.1289/ehp.9087213. View