» Articles » PMID: 15897551

Epigenetic Profiling of Cutaneous T-cell Lymphoma: Promoter Hypermethylation of Multiple Tumor Suppressor Genes Including BCL7a, PTPRG, and P73

Overview
Journal J Clin Oncol
Specialty Oncology
Date 2005 May 18
PMID 15897551
Citations 89
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: To analyze the occurrence of promoter hypermethylation in primary cutaneous T-cell lymphoma (CTCL) on a genome-wide scale, focusing on epigenetic alterations with pathogenetic significance.

Materials And Methods: DNA isolated from biopsy specimens of 28 patients with CTCL, including aggressive CTCL entities (transformed mycosis fungoides and CD30-negative large T-cell lymphoma) and an indolent entity (CD30-positive large T-cell lymphoma), were investigated. For genome-wide DNA methylation screening, differential methylation hybridization using CpG island microarrays was applied, which allows simultaneous detection of the methylation status of 8640 CpG islands. Bisulfite sequence analysis was applied for confirmation and detection of hypermethylation of eight selected tumor suppressor genes.

Results: The DNA methylation patterns of CTCLs emerging from differential methylation hybridization analysis included 35 CpG islands hypermethylated in at least four of the 28 studied CTCL samples when compared with benign T-cell samples. Hypermethylation of the putative tumor suppressor genes BCL7a (in 48% of CTCL samples), PTPRG (27%), and thrombospondin 4 (52%) was confirmed and demonstrated to be associated with transcriptional downregulation. BCL7a was hypermethylated at a higher frequency in aggressive (64%) than in indolent (14%) CTCL entities. In addition, the promoters of the selected tumor suppressor genes p73 (48%), p16 (33%), CHFR (19%), p15 (10%), and TMS1 (10%) were hypermethylated in CTCL.

Conclusion: Malignant T cells of patients with CTCL display widespread promoter hypermethylation associated with inactivation of several tumor suppressor genes involved in DNA repair, cell cycle, and apoptosis signaling pathways. In view of this, CTCL may be amenable to treatment with demethylating agents.

Citing Articles

Clinicopathologic characteristics and outcomes of patients with mycosis fungoides: A single tertiary center retrospective analysis in Saudi Arabia.

Alghubaywi F, Alharthi S, Aldharman S, Najjar R, Aleissa M, Aljarbou O Saudi Med J. 2023; 44(4):394-400.

PMID: 37062543 PMC: 10153609. DOI: 10.15537/smj.2023.44.4.20220860.


SWI/SNF complexes in hematological malignancies: biological implications and therapeutic opportunities.

Andrades A, Peinado P, Alvarez-Perez J, Sanjuan-Hidalgo J, Garcia D, Arenas A Mol Cancer. 2023; 22(1):39.

PMID: 36810086 PMC: 9942420. DOI: 10.1186/s12943-023-01736-8.


Advances in the understanding and treatment of Cutaneous T-cell Lymphoma.

Bakr F, Whittaker S Front Oncol. 2022; 12:1043254.

PMID: 36505788 PMC: 9729763. DOI: 10.3389/fonc.2022.1043254.


A Pan-Cancer Analysis of the Oncogenic Role of : A Potential Biomarker for Prognosis and Immunotherapy.

Yang D, Li H, Chen Y, Li C, Ren W, Huang Y Front Genet. 2022; 13:906174.

PMID: 35910232 PMC: 9334570. DOI: 10.3389/fgene.2022.906174.


The Robust Tumoricidal Effects of Combined BET/HDAC Inhibition in Cutaneous T-Cell Lymphoma Can Be Reproduced by ΔNp73 Depletion.

Zhao L, Hsiao T, Stonesifer C, Daniels J, Garcia-Saleem T, Choi J J Invest Dermatol. 2022; 142(12):3253-3261.e4.

PMID: 35787399 PMC: 9691518. DOI: 10.1016/j.jid.2022.06.005.