» Articles » PMID: 15897184

Mechanism and Function of Poleward Flux in Xenopus Extract Meiotic Spindles

Overview
Specialty Biology
Date 2005 May 18
PMID 15897184
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

In Xenopus extract meiotic spindles, microtubules slide continuously towards their minus ends, a process called poleward flux. This article discusses recent progress in determining the mechanism of poleward flux, and its functions in spindle organization and generating force on chromosomes. Bipolar organization is required for flux and inhibition of the mitotic kinesin Eg5 inhibits flux, suggesting the sliding force for flux is generated by Eg5 pushing anti-parallel microtubules apart. An important function of flux in spindle organization may be to transport minus ends nucleated at chromatin towards the pole. By pulling microtubules through attachment sites at kinetochores, flux may generate poleward force on metaphase chromosomes.

Citing Articles

Augmin prevents merotelic attachments by promoting proper arrangement of bridging and kinetochore fibers.

Stimac V, Koprivec I, Manenica M, Simunic J, Tolic I Elife. 2022; 11.

PMID: 36269126 PMC: 9640188. DOI: 10.7554/eLife.83287.


Length-dependent poleward flux of sister kinetochore fibers promotes chromosome alignment.

Risteski P, Bozan D, Jagric M, Bosilj A, Pavin N, Tolic I Cell Rep. 2022; 40(5):111169.

PMID: 35926461 PMC: 9364240. DOI: 10.1016/j.celrep.2022.111169.


Mechanisms by Which Kinesin-5 Motors Perform Their Multiple Intracellular Functions.

Pandey H, Popov M, Goldstein-Levitin A, Gheber L Int J Mol Sci. 2021; 22(12).

PMID: 34203964 PMC: 8232732. DOI: 10.3390/ijms22126420.


KINESIN-12E regulates metaphase spindle flux and helps control spindle size in Arabidopsis.

Herrmann A, Livanos P, Zimmermann S, Berendzen K, Rohr L, Lipka E Plant Cell. 2021; 33(1):27-43.

PMID: 33751090 PMC: 8136872. DOI: 10.1093/plcell/koaa003.


Self-straining of actively crosslinked microtubule networks.

Furthauer S, Lemma B, Foster P, Ems-McClung S, Yu C, Walczak C Nat Phys. 2020; 15(12):1295-1300.

PMID: 32322291 PMC: 7176317. DOI: 10.1038/s41567-019-0642-1.


References
1.
Sharp D, Rogers G, Scholey J . Microtubule motors in mitosis. Nature. 2000; 407(6800):41-7. DOI: 10.1038/35024000. View

2.
Mitchison T, Maddox P, Gaetz J, Groen A, Shirasu M, Desai A . Roles of polymerization dynamics, opposed motors, and a tensile element in governing the length of Xenopus extract meiotic spindles. Mol Biol Cell. 2005; 16(6):3064-76. PMC: 1142448. DOI: 10.1091/mbc.e05-02-0174. View

3.
Karsenti E, Vernos I . The mitotic spindle: a self-made machine. Science. 2001; 294(5542):543-7. DOI: 10.1126/science.1063488. View

4.
Vallotton P, Ponti A, Waterman-Storer C, Salmon E, Danuser G . Recovery, visualization, and analysis of actin and tubulin polymer flow in live cells: a fluorescent speckle microscopy study. Biophys J. 2003; 85(2):1289-306. PMC: 1303246. DOI: 10.1016/S0006-3495(03)74564-0. View

5.
Maddox P, Straight A, Coughlin P, Mitchison T, Salmon E . Direct observation of microtubule dynamics at kinetochores in Xenopus extract spindles: implications for spindle mechanics. J Cell Biol. 2003; 162(3):377-82. PMC: 2172681. DOI: 10.1083/jcb.200301088. View