» Articles » PMID: 15827326

Pentameric Procyanidin from Theobroma Cacao Selectively Inhibits Growth of Human Breast Cancer Cells

Overview
Journal Mol Cancer Ther
Date 2005 Apr 14
PMID 15827326
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

A naturally occurring, cocoa-derived pentameric procyanidin (pentamer) was previously shown to cause G0/G1 cell cycle arrest in human breast cancer cells by an unknown molecular mechanism. Here, we show that pentamer selectively inhibits the proliferation of human breast cancer cells (MDA MB-231, MDA MB-436, MDA MB-468, SKBR-3, and MCF-7) and benzo(a)pyrene-immortalized 184A1N4 and 184B5 cells. In contrast, normal human mammary epithelial cells in primary culture and spontaneously immortalized MCF-10A cells were significantly resistant. We evaluated whether this differential response to pentamer may involve depolarization of the mitochondrial membrane. Pentamer caused significant depolarization of mitochondrial membrane in MDA MB231 cells but not the more normal MCF-10A cells, whereas other normal and tumor cell lines tested gave variable results. Further investigations, using a proteomics approach with pentamer-treated MDA MB-231, revealed a specific dephosphorylation, without changes in protein expression, of several G1-modulatory proteins: Cdc2 (at Tyr15), forkhead transcription factor (at Ser256, the Akt phosphorylation site) and p53 (Ser392). Dephosphorylation of p53 (at Ser392) by pentamer was confirmed in MDA MB-468 cells. However, both expression and phosphorylation of retinoblastoma protein were decreased after pentamer treatment. Our results show that breast cancer cells are selectively susceptible to the cytotoxic effects of pentameric procyanidin, and suggest that inhibition of cellular proliferation by this compound is associated with the site-specific dephosphorylation or down-regulation of several cell cycle regulatory proteins.

Citing Articles

Induction of Apoptosis and Modulation of Caspase Activity on MCF-7 Human Breast Cancer Cells by Bioactive Fractionated Cocoa Leaf Extract.

Ranneh Y, Abu Bakar M, Md Akim A, Bin Baharum Z, S Ellulu M, Fadel A Asian Pac J Cancer Prev. 2023; 24(7):2473-2483.

PMID: 37505782 PMC: 10676477. DOI: 10.31557/APJCP.2023.24.7.2473.


Criollo var. Beans: Biological Properties and Chemical Profile.

Lavorgna M, Pacifico S, Nugnes R, Russo C, Orlo E, Piccolella S Foods. 2021; 10(3).

PMID: 33803449 PMC: 8001065. DOI: 10.3390/foods10030571.


Preparative Separation of Procyanidins from Cocoa Polyphenolic Extract: Comparative Study of Different Fractionation Techniques.

Toro-Uribe S, Herrero M, Decker E, Lopez-Giraldo L, Ibanez E Molecules. 2020; 25(12).

PMID: 32575615 PMC: 7356151. DOI: 10.3390/molecules25122842.


Investigation of health benefits of cocoa in human colorectal cancer cell line, HT-29 through interactome analysis.

Zamanian-Azodi M, Rezaei-Tavirani M Gastroenterol Hepatol Bed Bench. 2019; 12(1):67-73.

PMID: 30949322 PMC: 6441487.


Fractioning of Proanthocyanidins of Uncaria tomentosa. Composition and Structure-Bioactivity Relationship.

Navarro M, Zamora W, Quesada S, Azofeifa G, Alvarado D, Monagas M Antioxidants (Basel). 2017; 6(3).

PMID: 28788071 PMC: 5618088. DOI: 10.3390/antiox6030060.