» Articles » PMID: 15774894

Novel Dephosphotetrahydromethanopterin Biosynthesis Genes Discovered Via Mutagenesis in Methylobacterium Extorquens AM1

Overview
Journal J Bacteriol
Specialty Microbiology
Date 2005 Mar 19
PMID 15774894
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Methylobacterium extorquens AM1 was used to explore the genetics of dephosphotetrahydromethanopterin (dH(4)MPT) biosynthesis. Strains with mutations in eight "archaeal-type" genes linked on the chromosome of M. extorquens AM1 were analyzed for the ability to synthesize dH(4)MPT, and six were found to be dH(4)MPT negative. Putative functions of these genes in dH(4)MPT biosynthesis are discussed.

Citing Articles

Structural diversity of the coenzyme methylofuran and identification of enzymes for the biosynthesis of its polyglutamate side chain.

Hemmann J, Bruhwiler M, Bortfeld-Miller M, Vorholt J J Biol Chem. 2021; 296:100682.

PMID: 33894199 PMC: 8141765. DOI: 10.1016/j.jbc.2021.100682.


Biotechnology progress for removal of indoor gaseous formaldehyde.

Shao Y, Wang Y, Zhao R, Chen J, Zhang F, Linhardt R Appl Microbiol Biotechnol. 2020; 104(9):3715-3727.

PMID: 32172323 DOI: 10.1007/s00253-020-10514-1.


An archaeal origin of the Wood-Ljungdahl HMPT branch and the emergence of bacterial methylotrophy.

Adam P, Borrel G, Gribaldo S Nat Microbiol. 2019; 4(12):2155-2163.

PMID: 31451772 DOI: 10.1038/s41564-019-0534-2.


Substrate Specificity Analysis of Dihydrofolate/Dihydromethanopterin Reductase Homologs in Methylotrophic α-Proteobacteria.

Burton M, Abanobi C, Wang K, Ma Y, Rasche M Front Microbiol. 2018; 9:2439.

PMID: 30364315 PMC: 6193120. DOI: 10.3389/fmicb.2018.02439.


Structure of the methanofuran/methanopterin-biosynthetic enzyme MJ1099 from Methanocaldococcus jannaschii.

Bobik T, Morales E, Shin A, Cascio D, Sawaya M, Arbing M Acta Crystallogr F Struct Biol Commun. 2014; 70(Pt 11):1472-9.

PMID: 25372812 PMC: 4231847. DOI: 10.1107/S2053230X1402130X.


References
1.
Xu H, Aurora R, Rose G, White R . Identifying two ancient enzymes in Archaea using predicted secondary structure alignment. Nat Struct Biol. 1999; 6(8):750-4. DOI: 10.1038/11525. View

2.
Rasche M, Havemann S, Rosenzvaig M . Characterization of two methanopterin biosynthesis mutants of Methylobacterium extorquens AM1 by use of a tetrahydromethanopterin bioassay. J Bacteriol. 2004; 186(5):1565-70. PMC: 344399. DOI: 10.1128/JB.186.5.1565-1570.2004. View

3.
Marx C, Lidstrom M . Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria. Biotechniques. 2002; 33(5):1062-7. DOI: 10.2144/02335rr01. View

4.
Caccamo M, Malone C, Rasche M . Biochemical characterization of a dihydromethanopterin reductase involved in tetrahydromethanopterin biosynthesis in Methylobacterium extorquens AM1. J Bacteriol. 2004; 186(7):2068-73. PMC: 374392. DOI: 10.1128/JB.186.7.2068-2073.2004. View

5.
Marx C, Chistoserdova L, Lidstrom M . Formaldehyde-detoxifying role of the tetrahydromethanopterin-linked pathway in Methylobacterium extorquens AM1. J Bacteriol. 2003; 185(24):7160-8. PMC: 296243. DOI: 10.1128/JB.185.23.7160-7168.2003. View