» Articles » PMID: 12909715

Glutathione Synthetase Homologs Encode Alpha-L-glutamate Ligases for Methanogenic Coenzyme F420 and Tetrahydrosarcinapterin Biosyntheses

Overview
Specialty Science
Date 2003 Aug 12
PMID 12909715
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Proteins in the ATP-grasp superfamily of amide bond-forming ligases have evolved to function in a number of unrelated biosynthetic pathways. Previously identified homologs encoding glutathione synthetase, d-alanine:d-alanine ligase and the bacterial ribosomal protein S6:glutamate ligase have been vertically inherited within certain organismal lineages. Although members of this specificity-diverse superfamily share a common reaction mechanism, the nonoverlapping set of amino acid and peptide substrates recognized by each family provided few clues as to their evolutionary history. Two members of this family have been identified in the hyperthermophilic marine archaeon Methanococcus jannaschii and shown to catalyze the final reactions in two coenzyme biosynthetic pathways. The MJ0620 (mptN) locus encodes a tetrahydromethanopterin:alpha-l-glutamate ligase that forms tetrahydrosarcinapterin, a single carbon-carrying coenzyme. The MJ1001 (cofF) locus encodes a gamma-F420-2:alpha-l-glutamate ligase, which caps the gamma-glutamyl tail of the hydride carrier coenzyme F420. These two genes share a common ancestor with the ribosomal protein S6:glutamate ligase and a putative alpha-aminoadipate ligase, defining the first group of ATP-grasp enzymes with a shared amino acid substrate specificity. As in glutathione biosynthesis, two unrelated amino acid ligases catalyze sequential reactions in coenzyme F420 polyglutamate formation: a gamma-glutamyl ligase adds 1-3 l-glutamate residues and the ATP-grasp-type ligase described here caps the chain with a single alpha-linked l-glutamate residue. The analogous pathways for glutathione, F420, folate, and murein peptide biosyntheses illustrate convergent evolution of nonribosomal peptide biosynthesis through the recruitment of single-step amino acid ligases.

Citing Articles

Viral potential to modulate microbial methane metabolism varies by habitat.

Zhong Z, Du J, Kostlbacher S, Pjevac P, Orlic S, Sullivan M Nat Commun. 2024; 15(1):1857.

PMID: 38424049 PMC: 10904782. DOI: 10.1038/s41467-024-46109-x.


Electrostatic Ratchet for Successive Peptide Synthesis in Nonribosomal Molecular Machine RimK.

Ohnuki J, Arimura Y, Kono T, Kino K, Kurumizaka H, Takano M J Am Chem Soc. 2023; 145(29):15963-15970.

PMID: 37452763 PMC: 10375531. DOI: 10.1021/jacs.3c03926.


Archaeal pseudomurein and bacterial murein cell wall biosynthesis share a common evolutionary ancestry.

Subedi B, Martin W, Carbone V, Duin E, Cronin B, Sauter J FEMS Microbes. 2023; 2:xtab012.

PMID: 37334239 PMC: 10117817. DOI: 10.1093/femsmc/xtab012.


Large-scale phylogenomics of aquatic bacteria reveal molecular mechanisms for adaptation to salinity.

Jurdzinski K, Mehrshad M, Delgado L, Deng Z, Bertilsson S, Andersson A Sci Adv. 2023; 9(21):eadg2059.

PMID: 37235649 PMC: 10219603. DOI: 10.1126/sciadv.adg2059.


Structural diversity of the coenzyme methylofuran and identification of enzymes for the biosynthesis of its polyglutamate side chain.

Hemmann J, Bruhwiler M, Bortfeld-Miller M, Vorholt J J Biol Chem. 2021; 296:100682.

PMID: 33894199 PMC: 8141765. DOI: 10.1016/j.jbc.2021.100682.


References
1.
Nishida H, Nishiyama M, Kobashi N, Kosuge T, Hoshino T, Yamane H . A prokaryotic gene cluster involved in synthesis of lysine through the amino adipate pathway: a key to the evolution of amino acid biosynthesis. Genome Res. 1999; 9(12):1175-83. DOI: 10.1101/gr.9.12.1175. View

2.
Allen J, Clark D, Krum J, Ensign S . A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation. Proc Natl Acad Sci U S A. 1999; 96(15):8432-7. PMC: 17533. DOI: 10.1073/pnas.96.15.8432. View

3.
Goldman P, Levy C . Carboxypeptidase G: purification and properties. Proc Natl Acad Sci U S A. 1967; 58(4):1299-306. PMC: 223923. DOI: 10.1073/pnas.58.4.1299. View

4.
Gushima H, Miya T, Murata K, Kimura A . Purification and characterization of glutathione synthetase from Escherichia coli B. J Appl Biochem. 1983; 5(3):210-8. View

5.
Fan C, Moews P, Shi Y, WALSH C, Knox J . A common fold for peptide synthetases cleaving ATP to ADP: glutathione synthetase and D-alanine:d-alanine ligase of Escherichia coli. Proc Natl Acad Sci U S A. 1995; 92(4):1172-6. PMC: 42660. DOI: 10.1073/pnas.92.4.1172. View