» Articles » PMID: 15678104

The Profile of Repeat-associated Histone Lysine Methylation States in the Mouse Epigenome

Overview
Journal EMBO J
Date 2005 Jan 29
PMID 15678104
Citations 346
Authors
Affiliations
Soon will be listed here.
Abstract

Histone lysine methylation has been shown to index silenced chromatin regions at, for example, pericentric heterochromatin or of the inactive X chromosome. Here, we examined the distribution of repressive histone lysine methylation states over the entire family of DNA repeats in the mouse genome. Using chromatin immunoprecipitation in a cluster analysis representing repetitive elements, our data demonstrate the selective enrichment of distinct H3-K9, H3-K27 and H4-K20 methylation marks across tandem repeats (e.g. major and minor satellites), DNA transposons, retrotransposons, long interspersed nucleotide elements and short interspersed nucleotide elements. Tandem repeats, but not the other repetitive elements, give rise to double-stranded (ds) RNAs that are further elevated in embryonic stem (ES) cells lacking the H3-K9-specific Suv39h histone methyltransferases. Importantly, although H3-K9 tri- and H4-K20 trimethylation appear stable at the satellite repeats, many of the other repeat-associated repressive marks vary in chromatin of differentiated ES cells or of embryonic trophoblasts and fibroblasts. Our data define a profile of repressive histone lysine methylation states for the repetitive complement of four distinct mouse epigenomes and suggest tandem repeats and dsRNA as primary triggers for more stable chromatin imprints.

Citing Articles

Setdb1 and Atf7IP form a hetero-trimeric complex that blocks Setdb1 nuclear export.

Kariapper L, Marathe I, Niesman A, Suino-Powell K, Chook Y, Wysocki V bioRxiv. 2025; .

PMID: 39764026 PMC: 11703210. DOI: 10.1101/2024.12.23.630145.


NSD3 protein methylation and stabilization transforms human ES cells into variant state.

Krishnamoorthy V, Hamdani F, Shukla P, Rao R, Anaitullah S, Biligiri K Life Sci Alliance. 2024; 8(3.

PMID: 39741006 PMC: 11707394. DOI: 10.26508/lsa.202402871.


KMT5C leverages disorder to optimize cooperation with HP1 for heterochromatin retention.

Knechtel J, Strickfaden H, Missiaen K, Hadfield J, Hendzel M, Underhill D EMBO Rep. 2024; 26(1):153-174.

PMID: 39562713 PMC: 11723951. DOI: 10.1038/s44319-024-00320-5.


Climate Change and New Challenges for Rural Communities: Particulate Matter Matters.

Miousse I, Hale R, Alsbrook S, Boysen G, Broadnax T, Murry C Sustainability. 2024; 15(23).

PMID: 39119507 PMC: 11307925. DOI: 10.3390/su152316192.


PHF2-mediated H3K9me balance orchestrates heterochromatin stability and neural progenitor proliferation.

Aguirre S, Pappa S, Serna-Pujol N, Padilla N, Iacobucci S, Nacht A EMBO Rep. 2024; 25(8):3486-3505.

PMID: 38890452 PMC: 11315909. DOI: 10.1038/s44319-024-00178-7.


References
1.
Baxter J, Sauer S, Peters A, John R, Williams R, Caparros M . Histone hypomethylation is an indicator of epigenetic plasticity in quiescent lymphocytes. EMBO J. 2004; 23(22):4462-72. PMC: 526455. DOI: 10.1038/sj.emboj.7600414. View

2.
Lippman Z, Gendrel A, Black M, Vaughn M, Dedhia N, McCombie W . Role of transposable elements in heterochromatin and epigenetic control. Nature. 2004; 430(6998):471-6. DOI: 10.1038/nature02651. View

3.
Ebert A, Schotta G, Lein S, Kubicek S, Krauss V, Jenuwein T . Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev. 2004; 18(23):2973-83. PMC: 534657. DOI: 10.1101/gad.323004. View

4.
Ratcliff F, Harrison B, Baulcombe D . A similarity between viral defense and gene silencing in plants. Science. 1997; 276(5318):1558-60. DOI: 10.1126/science.276.5318.1558. View

5.
Okano M, BELL D, Haber D, Li E . DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999; 99(3):247-57. DOI: 10.1016/s0092-8674(00)81656-6. View