» Articles » PMID: 12809602

Rb-mediated Heterochromatin Formation and Silencing of E2F Target Genes During Cellular Senescence

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2003 Jun 18
PMID 12809602
Citations 1035
Authors
Affiliations
Soon will be listed here.
Abstract

Cellular senescence is an extremely stable form of cell cycle arrest that limits the proliferation of damaged cells and may act as a natural barrier to cancer progression. In this study, we describe a distinct heterochromatic structure that accumulates in senescent human fibroblasts, which we designated senescence-associated heterochromatic foci (SAHF). SAHF formation coincides with the recruitment of heterochromatin proteins and the retinoblastoma (Rb) tumor suppressor to E2F-responsive promoters and is associated with the stable repression of E2F target genes. Notably, both SAHF formation and the silencing of E2F target genes depend on the integrity of the Rb pathway and do not occur in reversibly arrested cells. These results provide a molecular explanation for the stability of the senescent state, as well as new insights into the action of Rb as a tumor suppressor.

Citing Articles

Studying Cellular Senescence Using the Model Organism Drosophila melanogaster.

Louka X, Gumeni S, Trougakos I Methods Mol Biol. 2025; 2906:281-299.

PMID: 40082363 DOI: 10.1007/978-1-0716-4426-3_17.


The role of different physical exercises as an anti-aging factor in different stem cells.

Xu J, Song Z Biogerontology. 2025; 26(2):63.

PMID: 40009244 DOI: 10.1007/s10522-025-10205-2.


The Potential of Polyphenols in Modulating the Cellular Senescence Process: Implications and Mechanism of Action.

Della Vedova L, Baron G, Morazzoni P, Aldini G, Gado F Pharmaceuticals (Basel). 2025; 18(2).

PMID: 40005954 PMC: 11858549. DOI: 10.3390/ph18020138.


Antioxidant Senotherapy by Natural Compounds: A Beneficial Partner in Cancer Treatment.

Aleksandrova Y, Neganova M Antioxidants (Basel). 2025; 14(2).

PMID: 40002385 PMC: 11851806. DOI: 10.3390/antiox14020199.


Nuclear mechano-confinement induces geometry-dependent HP1α condensate alterations.

Hovet O, Nahali N, Halaburkova A, Haugen L, Paulsen J, Progida C Commun Biol. 2025; 8(1):308.

PMID: 40000755 PMC: 11862009. DOI: 10.1038/s42003-025-07732-6.