Li Y, Jaiswal S, Kaur R, Alsaadi D, Liang X, Drews F
BMC Cancer. 2021; 21(1):768.
PMID: 34215221
PMC: 8254236.
DOI: 10.1186/s12885-021-08276-8.
Li Y, Mullin M, Zhang Y, Drews F, Welch L, Showalter A
Plants (Basel). 2020; 9(12).
PMID: 33322028
PMC: 7763877.
DOI: 10.3390/plants9121751.
Masuda K, Renard-Guillet C, Shirahige K, Sutani T
Open Biol. 2020; 10(7):200052.
PMID: 32692956
PMC: 7574548.
DOI: 10.1098/rsob.200052.
Grote A, Li Y, Liu C, Voronin D, Geber A, Lustigman S
PLoS Negl Trop Dis. 2020; 14(6):e0008275.
PMID: 32574217
PMC: 7337397.
DOI: 10.1371/journal.pntd.0008275.
Foster J, Grote A, Mattick J, Tracey A, Tsai Y, Chung M
Nat Commun. 2020; 11(1):1964.
PMID: 32327641
PMC: 7181701.
DOI: 10.1038/s41467-020-15654-6.
Set cover-based methods for motif selection.
Li Y, Liu Y, Juedes D, Drews F, Bunescu R, Welch L
Bioinformatics. 2019; 36(4):1044-1051.
PMID: 31665223
PMC: 7703758.
DOI: 10.1093/bioinformatics/btz697.
TFforge utilizes large-scale binding site divergence to identify transcriptional regulators involved in phenotypic differences.
Langer B, Hiller M
Nucleic Acids Res. 2018; 47(4):e19.
PMID: 30496469
PMC: 6393245.
DOI: 10.1093/nar/gky1200.
Synergistic co-regulation and competition by a SOX9-GLI-FOXA phasic transcriptional network coordinate chondrocyte differentiation transitions.
Tan Z, Niu B, Tsang K, Melhado I, Ohba S, He X
PLoS Genet. 2018; 14(4):e1007346.
PMID: 29659575
PMC: 5919691.
DOI: 10.1371/journal.pgen.1007346.
Composing a Tumor Specific Bacterial Promoter.
Deyneko I, Kasnitz N, Leschner S, Weiss S
PLoS One. 2016; 11(5):e0155338.
PMID: 27171245
PMC: 4865170.
DOI: 10.1371/journal.pone.0155338.
A novel, dynamic pattern-based analysis of NF-κB binding during the priming phase of liver regeneration reveals switch-like functional regulation of target genes.
Cook D, Patra B, Kuttippurathu L, Hoek J, Vadigepalli R
Front Physiol. 2015; 6:189.
PMID: 26217230
PMC: 4493398.
DOI: 10.3389/fphys.2015.00189.
A widespread role of the motif environment in transcription factor binding across diverse protein families.
Dror I, Golan T, Levy C, Rohs R, Mandel-Gutfreund Y
Genome Res. 2015; 25(9):1268-80.
PMID: 26160164
PMC: 4561487.
DOI: 10.1101/gr.184671.114.
Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility.
Dogan N, Wu W, Morrissey C, Chen K, Stonestrom A, Long M
Epigenetics Chromatin. 2015; 8:16.
PMID: 25984238
PMC: 4432502.
DOI: 10.1186/s13072-015-0009-5.
Computational challenges, tools, and resources for analyzing co- and post-transcriptional events in high throughput.
Bahrami-Samani E, Vo D, de Araujo P, Vogel C, Smith A, Penalva L
Wiley Interdiscip Rev RNA. 2014; 6(3):291-310.
PMID: 25515586
PMC: 4397117.
DOI: 10.1002/wrna.1274.
Prediction of DNA binding motifs from 3D models of transcription factors; identifying TLX3 regulated genes.
Pujato M, Kieken F, Skiles A, Tapinos N, Fiser A
Nucleic Acids Res. 2014; 42(22):13500-12.
PMID: 25428367
PMC: 4267649.
DOI: 10.1093/nar/gku1228.
Binding site discovery from nucleic acid sequences by discriminative learning of hidden Markov models.
Maaskola J, Rajewsky N
Nucleic Acids Res. 2014; 42(21):12995-3011.
PMID: 25389269
PMC: 4245949.
DOI: 10.1093/nar/gku1083.
Open chromatin profiling in mice livers reveals unique chromatin variations induced by high fat diet.
Leung A, Parks B, Du J, Trac C, Setten R, Chen Y
J Biol Chem. 2014; 289(34):23557-67.
PMID: 25006255
PMC: 4156056.
DOI: 10.1074/jbc.M114.581439.
Discriminative motif optimization based on perceptron training.
Patel R, Stormo G
Bioinformatics. 2013; 30(7):941-8.
PMID: 24369152
PMC: 3967114.
DOI: 10.1093/bioinformatics/btt748.
Understanding variation in transcription factor binding by modeling transcription factor genome-epigenome interactions.
Chen C, Xiao S, Xie D, Cao X, Song C, Wang T
PLoS Comput Biol. 2013; 9(12):e1003367.
PMID: 24339764
PMC: 3854512.
DOI: 10.1371/journal.pcbi.1003367.
Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots.
Kumari S, Ware D
PLoS One. 2013; 8(10):e79011.
PMID: 24205361
PMC: 3812177.
DOI: 10.1371/journal.pone.0079011.
A general approach for discriminative de novo motif discovery from high-throughput data.
Grau J, Posch S, Grosse I, Keilwagen J
Nucleic Acids Res. 2013; 41(21):e197.
PMID: 24057214
PMC: 3834837.
DOI: 10.1093/nar/gkt831.