» Articles » PMID: 15654102

Variogram Analysis of the Spatial Genetic Structure of Continuous Populations Using Multilocus Microsatellite Data

Overview
Journal Genetics
Specialty Genetics
Date 2005 Jan 18
PMID 15654102
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

A geostatistical perspective on spatial genetic structure may explain methodological issues of quantifying spatial genetic structure and suggest new approaches to addressing them. We use a variogram approach to (i) derive a spatial partitioning of molecular variance, gene diversity, and genotypic diversity for microsatellite data under the infinite allele model (IAM) and the stepwise mutation model (SMM), (ii) develop a weighting of sampling units to reflect ploidy levels or multiple sampling of genets, and (iii) show how variograms summarize the spatial genetic structure within a population under isolation-by-distance. The methods are illustrated with data from a population of the epiphytic lichen Lobaria pulmonaria, using six microsatellite markers. Variogram-based analysis not only avoids bias due to the underestimation of population variance in the presence of spatial autocorrelation, but also provides estimates of population genetic diversity and the degree and extent of spatial genetic structure accounting for autocorrelation.

Citing Articles

Spatially Varying Frequencies Reveal the Invasion Origin of an Agricultural Pest Recently Introduced From Europe to North America.

Lecic S, Wolfe T, Ghosh A, Satar S, Souza Beraldo C, Smith E Evol Appl. 2024; 17(9):e70016.

PMID: 39310793 PMC: 11413411. DOI: 10.1111/eva.70016.


Effects of Forest Fragmentation on Connectivity and Genetic Diversity in an Endemic and an Invasive Rodent in Northwestern Madagascar.

Ramsay M, Sgarlata G, Barratt C, Salmona J, Andriatsitohaina B, Kiene F Genes (Basel). 2023; 14(7).

PMID: 37510355 PMC: 10378931. DOI: 10.3390/genes14071451.


The effect of sampling density and study area size on landscape genetics inferences for the Mississippi slimy salamander ().

Burgess S, Garrick R Ecol Evol. 2021; 11(11):6289-6304.

PMID: 34141218 PMC: 8207395. DOI: 10.1002/ece3.7481.


Deep divergence between island populations in lichenized fungi.

Werth S, Meidl P, Scheidegger C Sci Rep. 2021; 11(1):7428.

PMID: 33795714 PMC: 8016866. DOI: 10.1038/s41598-021-86448-z.


Landscape genetics reveals unique and shared effects of urbanization for two sympatric pool-breeding amphibians.

Homola J, Loftin C, Kinnison M Ecol Evol. 2019; 9(20):11799-11823.

PMID: 31695889 PMC: 6822048. DOI: 10.1002/ece3.5685.


References
1.
Smouse P, Peakall R . Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity (Edinb). 1999; 82 ( Pt 5):561-73. DOI: 10.1038/sj.hdy.6885180. View

2.
Reusch , Hukriede , STAM , OLSEN . Differentiating between clonal growth and limited gene flow using spatial autocorrelation of microsatellites. Heredity (Edinb). 1999; 83 (Pt 2):120-6. DOI: 10.1046/j.1365-2540.1999.00546.x. View

3.
Hardy O, Vekemans X . Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models. Heredity (Edinb). 1999; 83 ( Pt 2):145-54. DOI: 10.1046/j.1365-2540.1999.00558.x. View

4.
Chung M, Epperson B . Clonal and spatial genetic structure in Eurya emarginata (Theaceae). Heredity (Edinb). 2000; 84 ( Pt 2):170-7. DOI: 10.1046/j.1365-2540.2000.00644.x. View

5.
Renwick A, Davison L, Spratt H, King J, Kimmel M . DNA dinucleotide evolution in humans: fitting theory to facts. Genetics. 2001; 159(2):737-47. PMC: 1461811. DOI: 10.1093/genetics/159.2.737. View