DNA Dinucleotide Evolution in Humans: Fitting Theory to Facts
Overview
Affiliations
We examine length distributions of approximately 6000 human dinucleotide microsatellite loci, representing chromosomes 1-22, from the GDB database. Under the stepwise mutation model, results from theory and simulation are compared with the empirical data. In both constant and expanding population scenarios, a simple single-step model with parameters chosen to account for the observed variance of microsatellite lengths produces results inconsistent with the observed heterozygosity and the dispersion of length skewness. Complicating the model by allowing a variable mutation rate accounts for the homozygosity, and introducing a small probability of a large mutation step accounts for the dispersion in skewnesses. We discuss these results in light of the long-term evolution of microsatellites.
Large numbers of vertebrates began rapid population decline in the late 19th century.
Li H, Xiang-Yu J, Dai G, Gu Z, Ming C, Yang Z Proc Natl Acad Sci U S A. 2016; 113(49):14079-14084.
PMID: 27872315 PMC: 5150392. DOI: 10.1073/pnas.1616804113.
Muller B, Sakamoto T, de Menezes I, Prado G, Martins W, Brondani C Plant Mol Biol. 2014; 86(4-5):455-70.
PMID: 25164100 DOI: 10.1007/s11103-014-0240-7.
Mutational dynamics of microsatellites.
Bhargava A, Fuentes F Mol Biotechnol. 2009; 44(3):250-66.
PMID: 20012711 DOI: 10.1007/s12033-009-9230-4.
The rate and spectrum of microsatellite mutation in Caenorhabditis elegans and Daphnia pulex.
Seyfert A, Cristescu M, Frisse L, Schaack S, Thomas W, Lynch M Genetics. 2008; 178(4):2113-21.
PMID: 18430937 PMC: 2323801. DOI: 10.1534/genetics.107.081927.
Mutation rate variation at human dinucleotide microsatellites.
Xu H, Chakraborty R, Fu Y Genetics. 2005; 170(1):305-12.
PMID: 15716501 PMC: 1449715. DOI: 10.1534/genetics.104.036855.